Добавлен: 13.02.2019
Просмотров: 1559
Скачиваний: 19
DDR SDRAM не имеет полной совместимости с SDRAM, хотя использует метод управления, как у SDRAM, и стандартный 168-контактный разъем DIMM. DDR SDRAM достигает удвоенной пропускной способности за счет работы на обеих границах тактового сигнала (на подъеме и спаде), а SDRAM работает только на одной.
SLDRAM
Стандарт SLDRAM является открытым, т. е. не требует дополнительной платы за лицензию, дающую право на производ ство чипов, что позволяет снизить их стоимость. Подобно предыдущей технологии, SLDRAM использует обе границы тактового сигнала. Что касается интерфейса, то SLDRAM перенимает протокол, названный SynchLink Interface. Эта память стремится работать на частоте 400 МГц.
-
всех предыдущих DRAM были разделены линии адреса, данных
-
управления, которые накладывают ограничения на скорость работы устройств. Для преодоления этого ограничения в некоторых технологических решениях все сигналы стали выполняться на одной шине. Двумя из таких решений являются технологии SLDRAM и DRDRAM. Они получили наибольшую популярность и заслуживают внимания. Ниже представлен модуль памяти DRDRAM.
Модуль памяти DRDRAM
RDRAM (Rambus DRAM)
RDRAM представляет спецификацию, созданную Rambus, Inc. Частота работы памяти равна 400 МГц, но за счет использования обеих
границ сигнала достигается частота, эквивалентная 800 МГц.
Спецификация Rambus сейчас наиболее интересна и перспективна.
Direct Rambus DRAM - это высокоскоростная динамическая память
-
произвольным доступом, разработанная Rambus, Inc. Она обеспечивает высокую пропускную способность по сравнению с большинством других
DRAM. Direct Rambus DRAMs представляет интегрированную на системном уровне технологию.
Технология Direct Rambus представляет собой третий этап развития памяти RDRAM. Впервые память RDRAM появилась в 1995 г., работала на частоте 150 МГц и обеспечивала пропускную способность 600 Мбайт/с. Она использовалась в станциях SGI Indigo2 IMPACTtm, в приставках Nintendo64, а также в качестве видеопамяти. Следующее поколение RDRAM появилось в 1997 г. под названием Concurrent RDRAM. Новые модули были полностью совместимы с первыми. Но за год до этого события в жизни компании произошло не менее значимое событие. В декабре 1996 г. Rambus, Inc. и Intel Corporation объявили о совместном развитии памяти RDRAM и продвижении ее на рынок персональных компьютеров.
Сейчас стали появляться новые типы RAM микросхем и модулей. Встречаются такие понятия, как FPM RAM, EDO RAM, DRAM, VRAM,
WRAM, SGRAM, MDRAM, SDRAM, SDRAM II (DDR SDRAM), ESDRAM, SLDRAM, RDRAM, Concurrent RDRAM, Direct Rambus. Большинство из этих технологий используются лишь на графических платах, и в производстве системной памяти компьютера используются лишь некоторые из них.
Существует тип памяти, совершенно отличный от других, - статическая оперативная память (Static RAM – SRAM). Она названа так потому, что, в отличии от динамической оперативной памяти , для сохранения ее содержимого не требуется переодической регенерации. Но это не единственное ее преимущество.
SRAM имеет более высокое быстродействие, чем динамическая оперативная память, и может работать на той же частоте, что и современные процессоры.
Время доступа SRAM не более 2 нс, это означает, что такая память может работать синхронно с процессорами на частоте 500 МГц или выше. Однако для хранения каждого бита в конструкции SRAM используется кластер из 6 транзисторов. Использование транзисторов без каких либо конденсаторов означает, что нет необходимости в регенерации. Пока подается питание, SRAM будет помнить то, что сохранено.
Микросхемы SRAM не используются для всей системной памяти потому, что по сравнению с динамической оперативной памятью быстродействие SRAM намного выше, но плотность ее намного ниже, а цена довольно высокая. Более низкая плотность означает, что микросхемы SRAM имеют большие габариты, хотя их информационная емкость намного меньше. Большое число транзисторов и кластиризованное их размещение не только увеличивает габариты SRAM, но и значительно повышает стоимость технологического процесса по сравнению с аналогичными параметрами для микросхем DRAM.
Несмотря на это, разработчики все-таки применяют память типа SRAM для повышения эффективности РС. Но во избежание значительного увеличения стоимости устанавливается только небольшой объем высокоскоростной памяти SRAM, которая используется в качестве кэш-памяти. Кэш-память работает на тактовых частотах, близких или даже равных тактовым частотам процессора, причем обычно именно эта
память используется процессором при чтении и записи. Во время операции чтения данные в высокоскоростную кэш-память предварительно записываются из оперативний памяти с низким быстродействием, то есть из DRAM. Поэтому именно кэш-память позволяет сократить количество “простоев” и увеличить быстродействие компьютера в целом.
Эффективность кэш-памяти выражается коэффициентом совпадения, или коэффициентом успеха. Коэффициент совпадения равен отношению количества удачных обращений в кэш к общему количеству обращений. Попадание – это событие состоящее в том, что необходимые процессору данные предварительно считываются в кэш из оперативной памяти; иначе говоря, в случае попадания процессор может считывать данные из кэш-памяти. Неудачным обращением в кэш считается такое, при котором контроллер кэша не предусмотрел потребности в данных, находящихся по указанному абсолютному адресу. В таком случае необходимые данные не были предваритель считаны в кэш-память, поэтому процессор должен отыскать их в более медленной оперативной памяти, а не в быстродействующем кэше.
Чтобы минимизировать время ожидания при считывании процессором данных из медленной оперативной памяти, в современных персональных компьютерах обычно предусмотрены два типа кэш-памяти: кэш-память первого уровня (L1) и кэш-память второго уровня (L2). Кэш-память первого уровня также называется встроенным, или внутренним кэшем; он непосредственно встроен в процессор и фактически является частью микросхемы процессора.
Кэш-память второго уровня называется вторичным, или внешним кэшем; он устанавливается вне микросхемы процессора.
Первоначально кэш-память проектировадлась как асинхронная, то есть не была синхронизирована с шиной процессора и могла работать на другой тактовой частоте. При внедрении набора микросхем системной
логики 430FX в начале 1995 года был разработан новый тип синхронной кэш-памяти. Она работает синхронно с шиной процессора, что повышает
-
быстродействие и эффективность. В то же время был добавлен режим pipeline burst mode (конвеерный монопольный режим). Он позволил сократить время ожидания за счет уменьшения количества состояний ожидания после первой передачи данных. Использование одного из этих режимов подразумевает наличие другого.
Разъемы SIMM и DIMM
-
большинстве современных компьютеров вместо отдельных микросхем памяти используются модули SIMM или DIMM,
представляющие собой небольшие платы, которые устанавливаются в специальные разъемы на системной плате или плате памяти. Отдельные микросхемы так припаены к плате модуля SIMM или DIMM, что выпаить
-
заменить их практически невозможно. При появлении неисправности приходится заменять весь модуль. По существу, модуль SIMM или DIMM
можно считать одной большой микросхемой.
-
РС-совместимых компьютерах применяются в основном два типа модулей SIMM: 30- контактные (9разрядов) и 72- контактные (36 разрядов). Первые из них меньше по размерам. Микросхемы в модулях SIMM могут устанавливаться как на одной, так и на обеих сторонах платы. Использование 30- контактных модулей неэффективно, поскольку для заполнения одного банка памяти новых 64- разрядных систем требуется восемь таких модулей.
72-пиновые разъемы SIMM ожидает та же участь, которая несколькими годами раньше постигла их 30-пиновых предшественников:
те уже давно не производятся. Им на смену в 1996 г. пришел новый разъем DIMM со 168 контактами, а сейчас появляется еще разъем RIMM. Если на SIMM реализовывались FPM и EDO RAM, то на DIMM - более современная технология SDRAM. В системную плату модули SIMM необходимо было вставлять только попарно, а DIMM можно выбрать по