Файл: Курсовой проект тема Студент Колтыга И. А. Руководитель Смирнов Н. Н.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 11.01.2024

Просмотров: 98

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Аппараты с выносными циркуляционными трубами




Как отмечалось, естественная циркуляция раствора может быть усилена, если раствор, на опускном участке циркуляционного контура будет охлаждаться. Этим увеличивается скорость естественной циркуляции в выпарных аппаратах с выносными циркуляционными трубами / Приложение 1, рис 2 /. При расположении циркуляционных труб вне корпуса аппарата диаметр нагревательной камеры 1 может быть уменьшен по сравнению с камерой аппарата / Приложение 1, рис.1 /, а циркуляционные трубы 2 компактно размещены вокруг нагревательной камеры. На рис. 2, показан аппарат с одной циркуляционной трубой, причём центробежный брызгоуловитель 3 для осушки вторичного пара также вынесен за пределы сепарационного (парового) пространства 4 аппарата.

Конструкции таких аппаратов несколько более сложны, но вних достигается более интенсивная теплопередача и уменьшается расход металла на 1 м2 поверхности нагрева по сравнению с аппаратами с подвесной нагревательной камерой или центральной циркуляционной трубой.

Аппараты с выносной нагревательной камерой.

При размещении нагревательной камеры вне корпуса аппарата имеется возможность повысить интенсивность выпаривания не только за счёт увеличения разности плотностей жидкости и паро-жидкостной смеси в циркуляционном контуре, но и за счет увеличения длины кипятильных труб.

Аппарат с выносной нагревательной камерой / Приложение 1, рис.3 /, имеет кипятильные трубы, длина которых часто достигает 7 м. Он работает при более интенсивной естественной циркуляции, обусловленной тем, что циркуляционная труба не обогревается, а подъёмный и опускной участки циркуляционного контура имеют значительную высоту.

Выносная нагревательная камера 1 легко отделяется от корпуса аппарата, что облегчает и ускоряет её чистку и ремонт. Ревизию и ремонт нагревательной камеры можно производить без полной остановки аппарата (а лишь при снижении его производительности), если присоединить к его корпусу две нагревательные камеры.

Исходный раствор поступает под нижнюю трубную решетку нагревательной камеры и, поднимаясь по кипятильным трубам, выпаривается. Иногда подачу раствора производят так, как указано на рисунке, в циркуляционную трубу. Вторичный пар отделяется от жидкости в сепараторе 2. Жидкость опускается по необогреваемой циркуляционной трубе 3, смешивается с исходным раствором, и цикл циркуляции повторяется снова. Вторичный пар, пройдя брызгоуловитель 4, удаляется сверху сепаратора. Упаренный раствор отбирается через боковой штуцер в коническом днище сепаратора.

Скорость циркуляции в аппаратах с выносной нагревательной камерой может достигать 1.5 м/с, что позволяет выпаривать в них концентрированные и кристаллизующиеся растворы, не опасаясь слишком быстрого загрязнения поверхности теплообмена. Благодаря универсальности, удобству эксплуатации и хорошей теплопередачи аппараты такого типа получили широкое распространение.

В некоторых конструкциях аппаратов с выносной нагревательной камерой циркуляционная труба отсутствует. Такие аппараты аналогичны аппарату, приведенному на рис. 3, у которого удалена циркуляционная труба.

В этом случае выпаривание происходит за один проход раствора через нагревательную камеру, т. е. Аппарат работает как прямоточный. Выпарные аппараты прямоточного типа не пригодны для выпаривания кристаллизирующихся растворов.
Аппараты с вынесенной зоной кипения.

При скоростях 0.25-1.5 м/с с которыми движется раствор в аппаратах с естественной циркуляцией, описанных ранее, не удаётся предотвратить отложения твердых осадков на поверхности теплообмена. Поэтому требуется периодическая остановка аппарата для очистки, что связано со снижением их производительности и увеличением стоимости эксплуатации.

Загрязнение поверхности теплообмена при выпаривании кристаллизирующихся растворов можно значительно уменьшить путём увеличения скорости циркуляции раствора и вынесением зоны его кипения за пределы нагревательной камеры.

В аппарате с вынесенной зоной кипения / Приложение 1, рис.4 /, выпариваемый раствор поступает снизу в нагревательную камеру 1 и, поднимаясь по трубам (длиной 4-7 м) вверх, вследствие гидростатического давления не закипает в них. По выходе из кипятильных труб раствор поступает в расширяющуюся кверху трубу вскипания 2, установленную над нагревательной камерой в нижней части сепаратора 3. Вследствие понижения давления в этой трубе раствор вскипает и, таким образом, парообразование происходит за пределами нагрева.

Циркулирующий раствор опускается по наружной необогреваемой трубе 4. Упаренный раствор отводится из кармана в нижней части сепаратора 3. Вторичный пар пройдя отбойник 5 и брызгоуловитель 6, удаляется сверху аппарата. Исходный раствор поступает либо в нижнюю часть аппарата (под трубную решетку нагревательной камеры), либо сверху в циркуляционную трубу 4.

Вследствие большой поверхности испарения, которая создаётся в объёме кипящего раствора и частичного самоиспарения капель, унесённых вторичным паром, значительно снижается брызгоунос. Кипящий раствор не соприкасается с поверхностью теплообмена, что уменьшает отложение накипи.

Ввиду значительного перепада температур (до 30 С) между греющим паром и раствором и малой потери напора в зоне кипения скорость циркуляции в этих аппаратах достигает 1.8-2 м/с.

Увеличение скорости приводит к увеличению производительности и интенсификации теплообмена. Коэффициенты теплопередачи в таких аппаратах достигают 3000 вт/(м2К).

Аппараты с вынесенной зоной кипения могут эффективно применяться для выпаривания кристаллизующихся растворов умеренной вязкости.

Области применения выпарных аппаратов.

Конструкция выпарного аппарата должна удовлетворять ряду общих требований, к числу которых относятся: высокая производительность и интенсивность теплопередачи при возможно меньших объёме аппарата и расходе металла на его изготовление, простота устройства, надёжность в эксплуатации, легкость очистки поверхности теплообмена, удобство осмотра, ремонта и замены отдельных частей.

Вместе с тем выбор конструкции и материала выпарного аппарата определяется в каждом конкретном случае физико-химическими свойствами выпариваемого раствора (вязкость, температурная депрессия, кристаллизуемость, термическая стойкость, химическая агрессивность и др.)

Как указывалось, высокие коэффициенты теплопередачи и большие производительности достигаются путём увеличения скорости циркуляции раствора. Однако одновременно возрастает расход энергии на выпаривание и уменьшается полезная разность температур, т. к. при постоянной температуре греющего пара с возрастанием гидравлического сопротивления увеличивается температура кипения раствора. Противоречивое влияние этих факторов должно учитываться при технико-экономическом сравнении аппаратов и выборе оптимальной конструкции.

Ниже приводятся области преимущественного использования выпарных аппаратов различных типов.

Для выпаривания растворов небольшой вязкости 810-3 Пас, без образования кристаллов чаще всего используются вертикальные выпарные аппараты с многократной естественной циркуляцией. Из них наиболее эффективны аппараты с выносной нагревательной камерой и с выносными необогреваемыми циркуляционными трубами.

Выпаривание некристаллизующихся растворов большой вязкости, достигающей порядка 0.1 Пас, производят в аппаратах с принудительной циркуляцией, реже – в прямоточных аппаратах с падающей плёнкой или в роторных прямоточных аппаратах.


В роторных прямоточных аппаратах, как отмечалось, обеспечиваются благоприятные условия для выпаривания растворов, чувствительных к повышенным температурам.

Аппараты с принудительной циркуляцией широко применяются для выпаривания кристаллизующихся или вязких растворов. Подобные растворы могут эффективно выпариваться и в аппаратах с вынесенной зоной кипения, работающих при естественной циркуляции. Эти аппараты при выпаривании кристаллизирующихся растворов могут конкурировать с выпарными аппаратами с принудительной циркуляцией.

Для сильно пенящихся растворов рекомендуется применять аппараты с поднимающейся пленкой.

2. Технологическая часть.
Описание технологической схемы.
В однокорпусной выпарной установке подвергается выпариванию водный раствор щелочи натрия под вакуумом.

Исходный раствор NaOH Р1 из емкости Е1 подается центробежным насосом Н в теплообменник Т, где подогревается до температуры, близкой к температуре кипения, подогревается греющим паром, который поступает в верхнюю часть теплообменника. Пар, сконденсировавшийся в межтрубном пространстве теплообменника, выводится из нижней части теплообменника. Теплообменник Т работает под избыточным давлением. Затем поступает в греющую камеру выпарного аппарата АВ. В данном варианте схемы применен выпарной аппарат с вынесенной греющей камерой и кипением в трубах. Предварительный подогрев раствора повышает интенсивность кипения. Выпариваемый раствор, нагревается и кипит с образованием вторичного пара. Отделение пара от жидкости происходит в сепараторе выпарного аппарата. Освобожденный от брызг и капель вторичный пар удаляется из верхней части сепаратора.

Движение раствора и вторичного пара осуществляется вследствие перепада давлений, создаваемого барометрическим конденсатором КБ и вакуум-насосом НВ. В барометрическом конденсаторе КБ вода и пар движутся в противоположных направлениях (пар – снизу, вода – сверху). Для увеличения поверхности контакта фаз конденсатор снабжен переливными полками. Смесь охлаждающей воды и конденсата выводится из конденсатора самотеком по барометрической трубе. Конденсат греющих паров из выпарного аппарата АВ выводится с помощью конденсатоотводчиков КО. Вакуум в системе поддерживается вакуум-насосом, который установлен ниже конденсатора и присоединяется к конденсатору в верхней его части.



Концентрированный раствор NaOH Р2 после выпарного аппарата подается в одноходовые холодильники Х1 и Х2, где охлаждается до определённой температуры. Концентрированный раствор охлаждается холодной водой. Затем концентрированный раствор отводится в вакуум-сборник Е2. Вакуум-сборник опорожняется периодически (по мере накопления). Далее раствор поступает в емкость упаренного раствора Е3. После чего идёт далее на производство.

3. Технологические расчеты.
3.1 Расчёт выпарного аппарата.
3.1.1. Материальный баланс процесса выпаривания.
Основные уравнения материального баланса:
(1)
(2)
где - массовые расходы начального и конечного раствора, кг/с;

хнач, хкон – массовые доли растворенного вещества в начальном и конечном растворе;

W – массовый расход выпариваемой воды, кг/с:


кг/с
кг/с
3.1.2. Определение температур и давлений в узловых точках технологической схемы.
3.1.2.1 Определение давления и температуры в сепараторе Р1,t1

(3)

По паровым таблицам ({1}, стр. 550), находим t1
t1=80.3 Цельсия
3.1.2.2. Определение давления и температуры вторичного пара в барометрическом конденсаторе Р0,t0 . Определение давления и температуры в выпарном аппарате Р1,t1

.

Определим температуру в барометрическом конденсаторе t0:

Давление вторичного пара в барометрическом конденсаторе Р0, Па,
Найдем по паровым табл. Исходя из t0 :







=100.3 С(!!!!!!!!!!!!)

      1. Тепловой баланс выпарного аппарата.


Уравнение теплового баланса выпарного аппарата:
Q = Qнагр+ Qисп+ Qпот (8)
где Q – расход теплоты на выпаривание, Вт;

Qнагр – расход теплоты на нагрев раствора до температуры кипения, Вт;

Qисп– расход теплоты на упаривание раствора до конечной концентрации, Вт;

Qпот – расход теплоты на компенсацию потерь в окружающую среду, Вт;
3.1.3.1. Расход теплоты на компенсацию потерь в окружающую среду

Расход теплоты на компенсацию потерь в окружающую среду Qпот при расчёте выпарных аппаратов принимается 3-5% от суммы (Qнагр+ Qисп)

/ 2, с 247 /. Следовательно:
Q = 1.05(Qнагр+ Qисп) (9)
Температуру исходного раствора tнач, поступающего в выпарной аппарат из теплообменника примем на 5С меньше tкон:
tнач= tкон-3
tнач=89.1-3=86.1 С



        1. Расход теплоты на нагрев:



Qнагр= Gначснач(tкон-tнач) (10)
где Gнач – производительность по разбавленному раствору

снач – удельная теплоёмкость раствора при tнач и начальной концентрации Хнач , Дж/(кгК)

снач=3.994 Дж/(кгК)

Qнагр=4.17*3994*(89.1-86.1)=49965 Вт



        1. Расход теплоты на испарение:



Qисп=W(iвт.п - свtкон) (11)
где iвт.п – удельная энтальпия вторичного пара на выходе из аппарата при температуре t1, из таблицы / 2, табл.LVI /, кДж/кг;
св – удельная теплоёмкость воды при tкон, Дж/(кгК) по формуле (приложение 1 п.3)
iвт.п =2657 кДж/кг,
св=4223.6+2.476*87.6*log(87.6/100)=4210 Дж/(кгК)
Qисп=3.34*(2657000-4210*89.1)=7622*10^3 Вт
Q=(49965+7622*10^3)*1.05=7672*1.05=8056 кВт


      1. Расчёт поверхности теплообмена выпарного аппарата.



Для расчёта поверхности теплообмена выпарного аппарата запишем уравнение теплопередачи:
Q=KFtполезн. (12)
где К – коэффициент теплопередачи Вт/(м2К)

F – площадь поверхности теплообмена, м2;


(13)
F=Q/(K*tп)


Примем К по инженерным соображениям 1300 Вт/м^2*К. Полезная разность температур как правило составляет 30 град.
Рассчетная поверхность теплопередачи выпарного аппарата равна:
F=8056000/1300*30=207 м2


      1. Выбор выпарного аппарата по каталогу.



Произведём выбор аппарата по каталогу / 3,приложение 4.2 /. Для этого найденную площадь поверхности теплообмена следует увеличить на 10-20 %, для обеспечения запаса производительности.
Fв.п.=1.2F
Fв.п.=1.2207=248 м2
где Fв.п. – площадь выпарного аппарата с учётом запаса производительности, м2;
Выберем выпарной аппарат с естественной циркуляцией, кипением в трубах и вынесенной греющей камерой Наиболее подходящим вариантом данного аппарата является аппарат с площадью теплопередачи 250 м2;
Таблица 1. Основные размеры выпарного аппарата (по ГОСТ 1198781)

F=250

Fдейств.=267

Lтр.=4000

Nтр.=626

Dциркул.тр.=500
Определение параметров греющего пара.


  1. Определение гидростатической депрессии.


Оптимальная высота уровня определяется по формуле.

т.к. плотности и надо брать при температуре кипения раствора, пока неизвестной, приходится ею задаваться. Примем

Здесь плотности и равны 1191 и 962 соответственно (приложение 1, пункт 1).
Гидрастатическое давление в середине высоты труб при :

Температура кипения воды при 0.62 кгс/см^2 ([1],табл. LVII)

Гидростатическая депрессия