Файл: Нормальная физиология ответы на экзамен с задачами.docx
Добавлен: 13.02.2019
Просмотров: 18259
Скачиваний: 125
-
Основные законы гемодинамики. Изменение кровяного давления и скорости течения крови по ходу кровотока. Роль разных сосудов. Причины непрерывности кровотока.
Гемодинамика- раздел физиологии кровообращения, использующий законы гидродинамики (физические явления движения жидкости в замкнутых сосудах) для исследования причин, условий и механизмов движения крови в сердечно-сосудистой системе.
Согласно законам гидродинамики, ток жидкости по трубам определяется двумя силами: давлением, которое оказывает влияние на жидкость, и сопротивлением, которое она испытывает при трении о стенки сосудов и вихревых движениях. Данные силы определяют движение крови по сосудам, то есть лежат в основе законов гемодинамики.
Силой, создающей давление в сосудистой системе, является в основном сердце. При сокращении сердца кровь устремляется в артериальную систему, и дальнейшее движение осуществляется за счет разности давления в начале и конце пути. Самое высокое давление в аорте, меньше в артериях, затем в капиллярах и в венах давление наименьшее.
Падение давления обусловлено сопротивлением, которое препятствует течению крови.
Движение крови по сосудам зависит от диаметра сосудов, по которым течет кровь, от длины сосуда, от вязкости крови, характера течения крови и т.д. В целом все сосуды выполняют разные задачи, в зависимости от этого все сосуды подразделяются на несколько типов.
1. Магистральные сосуды - это аорта, легочные артерии и их крупные ветви. Функция магистральных сосудов заключается в аккумуляции, накоплении энергии сокращения сердца и обеспечении непрерывного тока крови по всей сосудистой системе.
2.Сосуды сопротивления. К ним относятся артериолы и прекапилляры. Функции: 1.Участвуют в поддержании уровня АД; 2. Регулируют величину местного кровотока. В работающем органе тонус артериол уменьшается, что увеличивает приток крови.
3.Сосуды обмена. К ним относятся капилляры. Функция - осуществление обмена между кровью и тканями.
4.Шунтирующие сосуды. Эти сосуды соединяют между собой мелкие артерии и вены. Функция - перебрасывание крови при необходимости из артериальной системы в венозную, минуя сеть капилляров.
5.
Емкостные сосуды. К этим сосудам относятся
венулы и вены. Ёмкостные сосуды не дают
сердцу «захлебнуться».
-
Гуморальная регуляция гемодинамики, прессорные и депрессорные агенты.
Гуморальные
влияния на сосуды Некоторые гуморальные
агенты суживают, а другие расширяют
просвет артериальных сосудов. К
сосудосуживающим веществам относятся
гормоны мозгового вещества надпочечников
— адреналин и норадреналин, а также
задней доли гипофиза — вазопрессин.
Адреналин и норадреналин суживают
артерии и артериолы кожи, органов брюшной
полости и легких, а вазопрессин действует
преимущественно на артериолы и капилляры.
Как адреналин и норадреналин, так и
вазопрессин оказывают влияние на сосуды
в очень малых концентрациях. Так сужение
сосудов у теплокровных животных
происходит при концентрации адреналина
в крови 1 -0-7 г/мл. Сосудосуживающий эффект
этих веществ обусловливает резкое
повышение артериального давления (
141). К числу гуморальных сосудосуживающих
факторов относится серотонин
(5-гидро-окситриптамин), продуцируемый
в слизистой оболочке кишечника и в
некоторых участках головного мозга.
Серотонин образуется также при распаде
кровяных пластинок. Физиологическое
значение серотонина в данном случае
состоит в том, что он суживает сосуды и
препятствует кровотечению из пораженного
сосуда. Особый сосудосуживающий фактор
образуется в почках, причем тем в больших
количествах, чем ниже их кровоснабжение.
По этой причине после частичного
сдавливания почечных артерий у животных
возникает стойкое повышение артериального
давления, обусловленное сужением
артериол.
-
Гемодинамический центр и его структура. Рецепторы сердечно-сосудистой системы. Тонус центров, регулирующих систему кровообращения.
Тонус центров, регулирующих деятельность сердца
Нервный центр, от которого идут к сердцу блуждающие нервы, как правило, находится в состоянии постоянного возбуждения — так называемого центрального тонуса. При нормальных условиях кровообращения по блуждающим нервам к сердцу постоянно поступают тормозящие влияния. Прекращение этих влияний после перерезки обоих блуждающих нервов у собаки вызывает учащение сокращений сердца.
У
человека временного выключения влияния
блуждающих нервов можно добиться
введением алкалоида атропина. В таких
случаях сокращения сердца резко
учащаются. Удаление обоих звездчатых
узлов, от которых отходят к сердцу
симпатические нервы, не влечет за собой
стойкого урежения сердечных сокращений,
так как тонус нервных центров, от которых
к сердцу идут симпатические нервы, или
отсутствует, или выражен слабо. Поддержание
центрального тонуса блуждающих нервов
обусловлено рефлекторными влияниями,
т. е. возбуждением ядра блуждающих нервов
импульсами, идущими к нему по
центростремительным нервам от различных
рецепторов. В поддержании тонуса ядер
блуждающих нервов особенно велика роль
тех импульсов, которые поступают к ним
по центростремительным нервам от
рецепторов дуги аорты и каротид-ного
синуса. Перерезка этих нервов вызывает
падение тонуса центров блуждающих
нервов и вследствие этого отмечается
такое же учащение сердечных сокращений,
как после перерезки самих блуждающих
нервов. На тонус ядер блуждающих нервов
влияют также некоторые химические
факторы. Тонус повышается при увеличении
содержания в крови адреналина, выделяемого
в кровь мозговым веществом надпочечников,
а также ионов Са2
-
Иннервация сосудов, механизм их сужения и расширения. Гуморальная регуляция сосудов.
Сужение артерий и артериол, снабженных преимущественно симпатическими нервами (вазоконстрикция) было впервые обнаружено Вальтером в 1842 г. в опытах на лягушках, а затем Бернаром (1852) в экспериментах на ухе кролика. Классический опыт Бернара состоит в том, что перерезка симпатического нерва на одной стороне шеи у кролика вызывает расширение сосудов, проявляющееся покраснением и потеплением уха оперированной стороны. Если раздражать симпатический нерв на шее, то ухо на стороне раздражаемого нерва бледнеет вследствие сужения его артерий и артериол, а температура уменьшается. Главными сосудосуживающими нервами органов брюшной полости являются симпатические волокна, проходящие в составе n. splanchnicus. После перерезки этих нервов кровоток через сосуды брюшной полости, лишенной сосудосуживающей симпатической иннервации, резко увеличивается вследствие расширения артерий и артериол. При раздражении n. splanchnicus сосуды желудка и тонкого кишечника суживаются. Симпатические сосудосуживающие нервы к конечностям идут в составе спинномозговых смешанных нервов, а также по стенкам артерий (в их адвентиции). Поскольку перерезка симпатических нервов вызывает расширение сосудов той области, которая иннервируется этими нервами, считается, что артерии и артериолы находятся под непрерывным сосудосуживающим влиянием симпатических нервов. Чтобы восстановить нормальный уровень артериального тонуса после перерезки симпатических нервов, достаточно раздражать их периферические отрезки электрическими стимулами частотой 1—2 в секунду. Увеличение частоты стимуляции может вызвать сужение артерий, а уменьшение — расширение артерий.
Гуморальные
влияния на сосуды Некоторые гуморальные
агенты суживают, а другие расширяют
просвет артериальных сосудов. К
сосудосуживающим веществам относятся
гормоны мозгового вещества надпочечников
— адреналин и норадреналин, а также
задней доли гипофиза — вазопрессин.
Адреналин и норадреналин суживают
артерии и артериолы кожи, органов брюшной
полости и легких, а вазопрессин действует
преимущественно на артериолы и капилляры.
Как адреналин и норадреналин, так и
вазопрессин оказывают влияние на сосуды
в очень малых концентрациях. Так сужение
сосудов у теплокровных животных
происходит при концентрации адреналина
в крови 1 -0-7 г/мл. Сосудосуживающий эффект
этих веществ обусловливает резкое
повышение артериального давления (
141). К числу гуморальных сосудосуживающих
факторов относится серотонин
(5-гидро-окситриптамин), продуцируемый
в слизистой оболочке кишечника и в
некоторых участках головного мозга.
Серотонин образуется также при распаде
кровяных пластинок. Физиологическое
значение серотонина в данном случае
состоит в том, что он суживает сосуды и
препятствует кровотечению из пораженного
сосуда. Особый сосудосуживающий фактор
образуется в почках, причем тем в больших
количествах, чем ниже их кровоснабжение.
По этой причине после частичного
сдавливания почечных артерий у животных
возникает стойкое повышение артериального
давления, обусловленное сужением
артериол.
-
Течение крови в венах и система микроциркуляции.
Движение крови в венах. Движение крови в венах также подчиняется основным законам гемодинамики. В венозном русле наоборот – давление падает в проксимальном направлении. Давление в начале венозной системе - вблизи капилляров колеблется от 5 до 15 мм рт.ст. (60 – 200 мм вод.ст.). В крупных венах давление значительно меньше – и колеблется от 0 до 5 мм рт.ст. Ввиду того, что давление крови в венах незначительное для определения его в венах применяют водные манометры. У человека венозное давленние определяют в венах локтевого сгиба прямым способом. В венах локтевого сгиба давление равняется 60 – 120 мм вод.ст.
Скорость движения крови в венах значительно меньше, чем в артериях. Какие же факторы обуславливают движение крови в венах?
1. Имеет большое значение остаточная сила сердечной деятельности. Эта сила называется силой проталкивания.
2. Присасывающее действие грудной клетки. В плевральной щели давление отрицательное, т.е. ниже атмосферного на 5-6 мм рт.ст. При вдохе оно увеличивается. Поэтому во время вдоха увеличивается давление между началом венозной системы и местом вхождения полых вен в сердце. Приток крови к сердцу облегчается.
3. Деятельность сердца, как вакуумного насоса. Во время систолы желудочков сердце уменьшается в продольном направлении. Предсердия подтягиваются к желудочкам. Их объем увеличивается. Давление в них падает. Это и создает небольшой вакуум.
4. Сифонные силы. Между артериолами и венулами имеются капилляры. Кровь течет непрерывной струей и за счет сифонных сил по системе сообщающихся сосудов она попадает из одних сосудов в другие.
5. Сокращение скелетных мышц. При их сокращении сдавливаются тонкие стенки вен и кровь, проходящая по ним, течет быстрее, т.к. давление в них повышается. Обратному току крови в венах препятствуют находящиеся там клапаны. Ускорение течения крови по венам происходит при усилении мышечной работы, т.е. при чередовании сокращения и расслабления (ходьба, бег). При длительном стоянии – застой в венах.
6. Сокращение диафрагмы. При сокращении диафрагмы ее купол опускается вниз и давит на органы брюшной полости, выдавливая из вен кровь – вначале в воротную вену, а затем – в полую.
7. В движении крови имеет значение гладкая мускулатура вен. Хотя мышечные элементы выражены слабо, все равно повышение тонуса гладких мышц ведет к сужению вен и тем самым способствует движению крови.
8. Гравитационные силы. Этот фактор является положительным для вен, лежащих выше сердца. В этих венах кровь под своей тяжестью течет к сердцу. Для вен, лежащих ниже сердца этот фактор является отрицательным. Тяжесть столба крови ведет к застою крови в венах. Однако большому скоплению крови в венах препятствуют сокращения мускулатуры самих вен. Если человек длительное время находится на постельном режиме, то механизм регуляции нарушается, поэтому резкое вставание ведет к появлению обморока, т.к. уменьшается приток крови к сердцу и ухудшается кровоснабжение головного мозга.
Система микроциркуляции обеспечивает обмен между кровью и тканями. В данную систему входят сосуды диаметром до 3-5 мкм, длина 750 мкм. Как система она была выделена в 1953 году, т.к. является достаточно важной в поддержании тканевого гемостаза. К микроциркуляторному руслу относят сосуды: распределители капиллярного кровотока (терминальные артериолы), метартериолы, артерио-венулярные анастомозы, прекапиллярные сфинктеры, капилляры (магистральные и боковые) и посткапиллярные венулы.
В месте отхождения капилляра от метартериолы имеется гладкомышечная клетка, получившая название – прекапиллярный сфинктер, т.к. ее сокращение вызывает прекращение тока крови по капиллярам.
Процессы транскапиллярного обмена жидкости определяется силами, действующими в области капилляра: капиллярное гидростатическое давление (Рс) и гидростатическое давление интерстициальной жидкости (Рi). Разность между которыми способствует процессу фильтрации – переходу жидкости из крови в интерстиций.
Гидростатическое давление варьирует в различных органах и тканях. В капиллярах почек – составляет 70 мм рт.ст., в легких – 6-8 мм рт.ст. В среднем на артериальном конце – 30 мм рт.ст., а на венозном – 10-15 мм рт.ст. В тканевой жидкости (интерстиции) гидростатическое давление от 30 до 0 мм рт.ст. Т.о., на артериальном конце идет процесс фильтрации (выход жидкости из капилляра), а на венозном конце – процесс реабсорбции (обратного всасывания веществ из интерстиция).
Немаловажную роль в процессе обмена между кровью и тканями играет онкотическое давление белков плазмы и внеклеточной жидкости. В плазме – 25 мм рт.ст., а в тканевой жидкости – 4,5 мм рт.ст.
Таким образом, чем выше гидростатическое давление и ниже онкотическое давление плазмы, тем больше скорость фильтрации. В среднем скорость фильтрации в микроциркуляторном русле составляет 20 л/сут, а скорость реабсорбции – 18 л/сут. Однако в зависимости от функции органа могут иметь разное значение.
Например, в капиллярах почек давление составляет 70 мм рт.ст. В результате объем фильтруемой жидкости за сутки составляет в среднем у взрослого человека 180 л. В капиллярах малого круга гидростатическое давление всего 5 мм рт.ст. В результате фильтрация в норме практически отсутствует. При гипертензии в малом круге может начаться процесс фильтрации, в результате развивается отек легкого из-за выхода жидкости из капилляров в ткань. Как следствие нарушается транспорт газов. Как видите, процесс фильтрации и реабсорбции играет важную роль в процессах дренажа тканей. При нарушении нормальных взаимоотношений данных процессов могут возникнуть опасные для жизни состояния.
Следующим
фактором, определяющим возможности
транскапиллярного обмена, является
проницаемость капиллярной стенки для
различных веществ.
-
Регуляция объёма циркулирующей крови. Кровяные депо. Капилляры
Для нормального кровоснабжения органов и тканей, поддержания постоянства артериального давления необходимо определенное соотношение между объемом циркулирующей крови и общей емкостью всей сосудистой системы. Это соответствие достигается при помощи ряда нервных и гуморальных регуляторных механизмов.
Рассмотрим реакции организма на уменьшение объема циркулирующей крови при кровопотере. В подобных случаях приток крови к сердцу уменьшается и уровень артериального давления снижается. В ответ на это возникают реакции, направленные на восстановление нормального уровня артериального давления. Прежде всего происходит рефлекторное сужение артерий. Кроме того, при кровопотере наблюдается рефлекторное усиление секреции сосудосуживающих гормонов: адреналина — мозговым слоем надпочечников и вазопрессина — задней долей гипофиза, а усиление секреции этих веществ приводит к сужению артериол. Помимо симпатоадреналовых влияний и действия вазопрессина, в поддержании артериального давления и объема циркулирующей крови на нормальном уровне при кровопотере, особенно в поздние сроки, имеет система ренин — ангиотензин — альдостерон. Возникающее после кровопотери снижение кровотока в почках приводит к усиленному выходу ренина и большему, чем в норме, образованию ангиотензина-II, который поддерживает артериальное давление. Кроме того, ангиотензин-II стимулирует выход из коры надпочечников альдостерона, который, во-первых, способствует поддержанию артериального давления, а во-вторых, усиливает реабсорбцию в почках натрия. Задержка натрия является важным фактором увеличения реабсорбции воды в почках и восстановления объема циркулирующей крови.