Файл: Закон теплопроводности Физический смысл коэффициента теплопроводности.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 12.01.2024

Просмотров: 74

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


В этом случае молекулы из слоя B «переносят» на слой A импульсы mV2 своего упорядоченного движения. Если V1> V2, то такие молекулы при столкновениях с частицами слоя А ускоряют свое упорядоченное движение, а молекулы слоя А замедляются. Напротив, когда молекулы переходят из быстро движущегося слоя A в слой B, они передают большие импульсы mV1, и столкновения между молекулами приводят к ускорению упорядоченного движения молекул слоя B.

Заключение

В своей работе я рассматривал явления переноса в газах. В общем случае я выяснил, что коэффициент теплопроводности для некоторых газов, жидкостей и твёрдых тел при атмосферном давлении, зависит от агрегатного состояния вещества (что видно, если посмотреть таблицу в моей курсовой работе, а лучше, к примеру, книгу о теплопроводности жидкостей и газов где приведены все газы и жидкости и подсчитан для некоторой температуры), его атомно-молекулярного строения, температуры и давления, состава (в случае смеси или раствора).

Если подробно рассматривать газа и жидкости , то как и для газа так и для жидкостей было сделано много различных опытов, впоследствии которых были получены формулы для определения .

Для различных газов, будь он, идеальный газ или реальный газ или ещё какой-то в конечном итоге видно что если к примеру взять газ идеальный, состоящий из твёрдых сферических молекул диаметром d, согласно кинетической теории газов, была получена конкретная формула для определения , если взять реальный газ, то довольно сложная функция температуры и давления, причём с ростом Т и р значение
возрастает, это я рассмотрел как пример для идеального и реального газа, (существуют газовые смеси, газ, состоящий из многоатомных молекул, для определения надо воспользоваться внутренними степенями свободы молекул, и другие примеры газов)

Все рассмотренные примеры характеризуются общим свойством — переносом некоторого признака из одних областей системы в другие. Неслучайно поэтому, что явления такого рода называются явлениями переноса. Каждое из них характеризуется своим коэффициентом переноса, и задача теории — уметь их вычислять. В общем случае это очень трудная задача, до сих пор полностью не решенная.

Оказывается, все три коэффициента (теплопроводности, диффузии и вязкости) пропорциональны длине свободного пробега молекул (l ) и средней скорости их теплового движения (υ ): . Такая зависимость коэффициентов переноса от характеристик молекулярного движения очень естественна. Ведь средняя скорость молекул υ определяет скорость переноса того или иного признака в процессе установления равновесия. Длина же свободного пробега l появляется в формуле потому, что после каждого столкновения параметры движения молекулы определяются параметрами системы в тех местах, где эти столкновения происходят, то есть в точках, отстоящих друг от друга на расстояние l. Так, в нашем примере с теплопроводностью величина энергии, передаваемой молекулой при очередном столкновении, определяется разностью температур в тех точках среды, где произошло это и предыдущее столкновение.

В данной курсовой работе были рассмотрены явления переноса в твердых телах. Явления переноса объединяют группу процессов, связанных с выравниванием неоднородностей плотности, температуры или скорости упорядоченного перемещения отдельных слоев вещества.

Список используемых источников

1. Нащокин В.В.Техническая термодинамика и теплопередача

2. А.К. Кикоин, И.К. КикоинОбщий Курс Физики – Молекулярная Физика

3. Миснар А. Теплопроводность твердых тел, жидкостей, газов и ихкомпозиций.

4. Интернет - wikipendia.ru (интернет энциклопедия)

1. Ашкрофт Н., Мермин Н. Физика твердого тела: Пер. с англ. В 2-х т. М.: Мир, 1979. Т. 1, Т. 2

2. Городецкий Е.Е. О явлениях переноса //Квант. — 1986. — № 9. — С. 27-29.



3. Епифанов. Г. И. Физика твердого тела. М.: Высшая школа,1977.

4. Зисман Г. А., Тодес О. М. Курс общей физики. В 3 т. – М.: Наука, 1995. – 343 с.

5. Шьюмон П., Диффузия в твердых телах, пер. с англ., М., 1966