Файл: Учебник для высших учебных заведений физической культуры Издание 2е, исправленное и дополненное.doc
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 12.01.2024
Просмотров: 2257
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
8.4.2. ПЕРЕЛИВАНИЕ КРОВИ
Основоположниками учения о группах крови и возможности ее переливания от одного человека к другому были К. Ландштейнер (1901) и Я. Янский( 1903). В нашей стране переливание крови впервые было проведено профессором Военно-медицинской академии В. Н.Шамовымв 1919г.,ав 1928г.им было предложено переливание трупной крови, за что он был удостоен Ленинской премии.
Я. Янский выделил четыре группы крови, встречающиеся у людей. Эта классификация не утратила своего значения и до настоящего времени. Она основана на сравнении антигенов, находящихся в эритроцитах (агглютиногенов), и антител, имеющихся в плазме (агглютининов). Выделены главные агглютиногены А и В и соответствующие агглютинины альфа и бета. Агглютиноген А и агглютинин альфа, а также В и бета называются одноименными. В крови человека не могут содержаться одноименные вещества. При встрече их возникает реакция агглютинации, т. е. склеивания эритроцитов, а в дальнейшем и разрушение (гемолиз). В этом случае говорят о несовместимости крови.
В эритроцитах крови, отнесенной к I (0) группе, не содержится агглютиногенов, в плазме же имеются агглютинины альфа и бета. В эритроцитах 11 (А) группы имеется агглютиноген А, а в плазме — агглютинин бета. Для III (В) группы крови характерно наличие агглютиногена В в эритроцитах и агглютинина альфа в плазме. IV (АВ) группа крови характеризуется содержанием агглютиногенов А и В и
отсутствием агглютининов.
Переливание несовместимой крови вызывает гемотрансфузионный шок— тяжелое патологическое состояние, которое может закончиться гибелью человека. В таблице 2 показано, в каких случаях при переливании крови донора (человек, дающий кровь) реципиенту (человек, принимающий кровь) возникает агглютинация (обозначено знаком +).
Людям первой (I) группы можно переливать кровь только этой группы, а также эту группу можно переливать людям всех других групп.
108
Таблица 2
Агглютинация при переливании крови люден разных групп
Агглютинины в плазме реципиента | Агглютинины в эритроцитах донора | |||
І (о) | II (А) | Ш (В) | IV (АВ) | |
І ( ) II ( ) III ( ) IV (0) | – – – – | + – + – | + + – – | + + + – |
Поэтому людей с I группой называют универсальными донорами. Людям IV группы можно переливать одноименную кровь, а также кровь всех остальных групп, поэтому этих людей называют универсальным и реципиентами. Кровь людей Ни III групп можно переливать людям с одноименной, а также с IV группой. Указанные закономерности отражены на рис. 17.
Важное значение при переливании крови имеет совместимость по резус-фактору. Впервые он был обнаружен в эритроцитах обезьян-макак породы «резус». Впоследствии оказалось, что резус-фактор содержится в эритроцитах 85% людей (резус-положительная кровь) и лишь у 15% людей отсутствует (резус-отрицательная кровь). При повторном переливании крови реципиенту, несовместимому по резус-фактору с донором, возникают осложнения, связанные с агглютинацией несовместимых донорских эритроцитов. Это является результатом воздействия специфических антирезус-агглютининов, вырабатываемых ретикуло-эндотелиальной системой после первого переливания.
При вступлении в брак резус-положительного мужчины с резус-отрицательной женщиной (что нередко случается) плод часто наследует резус-фактор отца. Кровь плода проникает в организм матери, вызывая образование антирезус-агглютининов, которые приводят к гемолизу эритроцитов будущего ребенка. Однако, для выраженных нарушений у первого ребенка их концентрация оказывается недостаточной и, как правило, плод рождается живым, но с гемолитической желтухой. При повторной беременности в крови матери резко возрастает концентрация антирезусных веществ, что проявляется не только гемолизом эритроцитов плода, но и внутрисосудистым свертыванием крови, нередко приводящим к его гибели и выкидышу.
109
Рис. 17. Схема допустимого переливания крови
8.5. РЕГУЛЯЦИЯ СИСТЕМЫ КРОВИ
Регуляция системы крови включает в себя поддержание постоянства объема циркулирующей крови, ее морфологического состава и физико-химических свойств плазмы. В организме существует два основных механизма регуляции системы крови — нервный и гуморальный.
Высшим подкорковым центром, осуществляющим нервную регуляцию системы крови, является гипоталамус. Кора головного мозга оказывает влияние на систему крови также через гипоталамус. Эфферентные влияния гипоталамуса включают механизмы кроветворения, кровообращения и перераспределения крови, ее депонирования и разрушения. Рецепторы костного мозга, печени, селезенки, лимфатических узлов и кровеносных сосудов воспринимают происходящие здесь изменения, афферентные импульсы от этих рецепторов служат сигналом соответствующих изменений в подкорковых центрах регуляции. Гипоталамус через симпатический отдел вегетативной нервной системы стимулирует кроветворение, усиливая эритропоэз. Парасимпатические нервные влияния тормозят эритропоэз и осуществляют перераспределение лейкоцитов: уменьшение их количества в периферических сосудах и увеличение в сосудах внутренних органов. Гипоталамус принимает также участие в регуляции осмотического давления, поддержании необходимого уровня сахара в крови и других физико-химических констант плазмы крови.
Нервная система оказывает как прямое, так и косвенное регулирующее влияние на систему крови. Прямой путь регуляции заключается в двусторонних связях нервной системы с органами кроветворения, кровераспределения и кроверазрушения. Афферентные и эфферентные
110
импульсы идут в обоих направлениях, регулируя все процессы системы крови. Косвенная связь между нервной системой и системой крови осуществляется с помощью гуморальных посредников, которые, влияя на рецепторы кроветворных органов, стимулируют ил и ослабляют гемопоэз.
Среди механизмов гуморальной регуляции крови особая роль принадлежит биологически активным гликопротеидам — гемопоэтинам, синтезируемым главным образом в почках, а также в печени и селезенке. Продукция эритроцитов регулируется эритропоэтинами, лейкоцитов — лейкопоэтинами и тромбоцитов — тромбопоэтинами. Эти вещества усиливают кроветворение в костном мозге, селезенке, печени, ретикулоэндотелиальной системе. Концентрация гемопоэтинов увеличивается при снижении в крови форменных элементов, но в малых количествах они постоянно содержатся в плазме крови здоровых людей, являясь физиологическими стимуляторами кроветворения.
Стимулирующее влияние на гемопоэз оказывают гормоны гипофиза (соматотропный и адренокортикотропный гормоны), коркового слоя надпочечников (глюкокортикоиды), мужские половые гормоны (андрогены). Женские половые гормоны (эстрогены) снижают гемопоэз, поэтому содержание эритроцитов, гемоглобина и тромбоцитов в крови женщин меньше, чем у мужчин. У мальчиков и девочек (до полового созревания) различий в картине крови нет, отсутствуют они и у людей старческого возраста.
9. КРОВООБРАЩЕНИЕ
Кровообращение представляет собой физиологические процессы, обеспечивающие непрерывное движение крови в организме благодаря деятельности сердца и сосудов. Посредством кровообращения достигается интеграция различных функций организма и его участие в реакциях на изменение окружающей среды.
9.1. СЕРДЦЕ И ЕГО ФИЗИОЛОГИЧЕСКИЕ СВОЙСТВА
Источником энергии, необходимой для продвижения крови по сосудам, является работа сердца. Оно представляет собой полый мышечный орган, разделенный продольной перегородкой на правую и левую половины. Каждая из них состоит из предсердия и желудочков, отделенных фиброзными перегородками. Односторонний ток крови из предсердий в желудочки и оттуда в аорту и легочные артерии обеспечивается соответствующими клапанами, открытие и закрытие которых зависит от градиента давлений по обе их стороны.
111
Толщина стенок различных отделов сердца неодинакова и определяется их функциональной ролью. У левого желудочка она составляет 10-15 мм, у правого — 5-8 мм и у предсердий — 2-3 мм. Масса сердца равна 250-300 г, а объем желудочков — 250-300 мл. Сердце снабжается кровью через коронарные (венечные) артерии, начинающиеся у места выхода аорты. Кровь через них поступает только во время расслабления миокарда, количество которой в покое составляет 200-300 мл , а при напряженной физической работе может достигать 1000 мл .
К основным свойствам сердечной мышцы относятся автоматия, возбудимость, проводимость и сократимость.
Автоматией сердца называется его способность к ритмическому сокращению без внешних раздражений под влиянием импульсов, возникающих в самом органе. Возбуждение в сердце возникает в месте впадения полых вен в правое предсердие, где находится так называемый синоатриальный узел (узел Кис-Фляка),являющийся главным водителем ритма сердца. Далее возбуждение по предсердиям распространяется до атриовентрикулярного узла (узел Ашоф-Тавара),расположенного в межпредсердной перегородке правого предсердия, затем по пучку Гисса, его ножкам и волокнам Пуркинье оно проводится к мускулатуре желудочков.
Автоматия обусловлена изменением мембранных потенциалов в водителе ритма, что связано со сдвигом концентрации ионов калия и натрия по обе стороны деполяризованных клеточных мембран. На характер проявления автоматии влияет содержание солей кальция в миокраде, рН внутренней среды и ее температура, некоторые гормоны (адреналин, норадреналин и ацетилхолин).
Возбудимость сердца проявляется в возникновении возбуждения при действии на него электрических, химических, термических и других раздражителей. В основе процесса возбуждения лежит появление отрицательного электрического потенциала в первоначально возбужденном участке, при этом сила раздражителя должна быть не менее пороговой. Сердце реагирует на раздражитель по закону «Все или ничего», т. е. или не отвечает на раздражение, или отвечает сокращением максимальной силы. Однако этот закон проявляется не всегда. Степень сокращения сердечной мышцы зависит не только от силы раздражителя, но и от величины ее предварительного растяжения, а также от температуры и состава питающей ее крови.
Возбудимость миокарда непостоянна. Б начальном периоде возбуждения сердечная мышца невосприимчива (рефрактерна) к повторным раздражениям, что составляет фазу абсолютной рефрактерности, равную по времени систоле сердца (0.2-0.3 с). Вследствие достаточно длительного периода абсолютной рефрактерности
112
сердечная мышца не может сокращаться по типу тетануса, что имеет исключительно важное значение для координации работы предсердий и желудочков.
С началом расслабления возбудимость сердца начинает восстанавливаться и наступает фаза относительной рефрактерности. Поступление в этот момент дополнительного импульса способно вызвать внеочередное сокращение сердца — экстрасистолу. При этом период, следующий за экстрасистолой, длится больше времени, чем обычно, и называется компенсаторной паузой. После фазы относительной рефрактерности наступает период повышенной возбудимости. По времени он совпадает с диастолическим расслаблением и характеризуется тем, что импульсы даже небольшой силы могут вызвать сокращение сердца.
Проводимость сердца обеспечивает распространение возбуждения от клеток водителей ритма по всему миокарду (рис. 18). Проведение возбуждения по сердцу осуществляется электрическим путем. Потенциал действия, возникающий в одной мышечной клетке, является раздражителем для других. Проводимость в разных участках сердца неодинакова и зависит от структурных особенностей миокарда и проводящей системы, толщины миокарда, а также от температуры, уровня гликогена, кислорода и микроэлементов в сердечной мышце.