Файл: Учебник для высших учебных заведений физической культуры Издание 2е, исправленное и дополненное.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 12.01.2024

Просмотров: 2257

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


8.4.2. ПЕРЕЛИВАНИЕ КРОВИ

Основоположниками учения о группах крови и возможности ее переливания от одного человека к другому были К. Ландштейнер (1901) и Я. Янский( 1903). В нашей стране переливание крови впер­вые было проведено профессором Военно-медицинской академии В. Н.Шамовымв 1919г.,ав 1928г.им было предложено перелива­ние трупной крови, за что он был удостоен Ленинской премии.

Я. Янский выделил четыре группы крови, встречающиеся у людей. Эта классификация не утратила своего значения и до настоящего времени. Она основана на сравнении антигенов, находящихся в эритроцитах (агглютиногенов), и антител, имеющихся в плазме (агглютининов). Выделены главные агглютиногены А и В и соответствующие агглютинины альфа и бета. Агглютиноген А и агглютинин альфа, а также В и бета называются одноименными. В крови человека не могут содержаться одноименные вещества. При встрече их возникает реакция агглютинации, т. е. склеивания эритроцитов, а в дальнейшем и разрушение (гемолиз). В этом случае говорят о несовместимости крови.

В эритроцитах крови, отнесенной к I (0) группе, не содержится агглютиногенов, в плазме же имеются агглютинины альфа и бета. В эритроцитах 11 (А) группы имеется агглютиноген А, а в плазме — агглютинин бета. Для III (В) группы крови характерно наличие агглютиногена В в эритроцитах и агглютинина альфа в плазме. IV (АВ) группа крови характеризуется содержанием агглютиногенов А и В и

отсутствием агглютининов.

Переливание несовместимой крови вызывает гемотрансфузионный шок— тяжелое патологическое состояние, которое может закончиться гибелью человека. В таблице 2 показано, в каких случаях при переливании крови донора (человек, дающий кровь) реципиенту (человек, принимающий кровь) возникает агг­лютинация (обозначено знаком +).

Людям первой (I) группы можно переливать кровь только этой группы, а также эту группу можно переливать людям всех других групп.

108

Таблица 2

Агглютинация при переливании крови люден разных групп

Агглютинины

в плазме реципиента

Агглютинины в эритроцитах донора


І (о)

II (А)

Ш (В)

IV (АВ)

І ( )

II ( )

III ( )

IV (0)









+



+



+

+





+

+

+





Поэтому людей с I группой называют универсальными донорами. Людям IV группы можно переливать одноименную кровь, а также кровь всех остальных групп, поэтому этих людей на­зывают универсальным и реципиентами. Кровь людей Ни III групп можно переливать людям с одноименной, а также с IV группой. Указанные закономерности отражены на рис. 17.

Важное значение при переливании крови имеет совместимость по резус-фактору. Впервые он был обнаружен в эритроцитах обезьян-макак породы «резус». Впоследствии оказалось, что резус-фак­тор содержится в эритроцитах 85% людей (резус-положительная кровь) и лишь у 15% людей отсутствует (резус-отрицательная кровь). При повторном переливании крови реципиенту, несовмести­мому по резус-фактору с донором, возникают осложнения, связан­ные с агглютинацией несовместимых донорских эритроцитов. Это является результатом воздействия специфических антирезус-агглю­тининов, вырабатываемых ретикуло-эндотелиальной системой пос­ле первого переливания.

При вступлении в брак резус-положительного мужчины с резус-отрицательной женщиной (что нередко случается) плод часто насле­дует резус-фактор отца. Кровь плода проникает в организм матери, вызывая образование антирезус-агглютининов, которые приводят к гемолизу эритроцитов будущего ребенка. Однако, для выраженных нарушений у первого ребенка их концентрация оказывается недоста­точной и, как правило, плод рождается живым, но с гемолитической желтухой. При повторной беременности в крови матери резко возра­стает концентрация антирезусных веществ, что проявляется не толь­ко гемолизом эритроцитов плода, но и внутрисосудистым свертыва­нием крови, нередко приводящим к его гибели и выкидышу.

109


Рис. 17. Схема допустимого переливания крови


8.5. РЕГУЛЯЦИЯ СИСТЕМЫ КРОВИ

Регуляция системы крови включает в себя поддержание постоян­ства объема циркулирующей крови, ее морфологического состава и физико-химических свойств плазмы. В организме существует два ос­новных механизма регуляции системы крови — нервный и гуморальный.

Высшим подкорковым центром, осуществляющим нервную регуля­цию системы крови, является гипоталамус. Кора головного мозга оказывает влияние на систему крови также через гипоталамус. Эфферентные влияния гипоталамуса включают механизмы крове­творения, кровообращения и перераспределения крови, ее депони­рования и разрушения. Рецепторы костного мозга, печени, селезен­ки, лимфатических узлов и кровеносных сосудов воспринимают происходящие здесь изменения, афферентные импульсы от этих ре­цепторов служат сигналом соответствующих изменений в подкорко­вых центрах регуляции. Гипоталамус через симпатический отдел ве­гетативной нервной системы стимулирует кроветворение, усиливая эритропоэз. Парасимпатические нервные влияния тормозят эритропоэз и осуществляют перераспределение лейкоцитов: уменьшение их количества в периферических сосудах и увеличение в сосудах внут­ренних органов. Гипоталамус принимает также участие в регуляции осмотического давления, поддержании необходимого уровня сахара в крови и других физико-химических констант плазмы крови.

Нервная система оказывает как прямое, так и косвенное регулиру­ющее влияние на систему крови. Прямой путь регуляции заключает­ся в двусторонних связях нервной системы с органами кроветворе­ния, кровераспределения и кроверазрушения. Афферентные и эфферентные

110

импульсы идут в обоих направлениях, регулируя все про­цессы системы крови. Косвенная связь между нервной системой и си­стемой крови осуществляется с помощью гуморальных посредни­ков, которые, влияя на рецепторы кроветворных органов, стимули­руют ил и ослабляют гемопоэз.

Среди механизмов гуморальной регуляции крови особая роль при­надлежит биологически активным гликопротеидам — гемопоэтинам, синтезируемым главным образом в почках, а также в печени и селезенке. Продукция эритроцитов регулируется эритропоэтинами, лейкоцитов — лейкопоэтинами и тромбоцитов — тромбопоэтинами. Эти вещества усиливают кроветворение в костном мозге, селезенке, печени, ретикулоэндотелиальной системе. Концентрация гемопоэтинов увеличивается при снижении в крови форменных элементов, но в малых количествах они постоянно содержатся в плазме крови здоровых людей, являясь физиологическими стимуляторами кроветворения.


Стимулирующее влияние на гемопоэз оказывают гормоны гипофи­за (соматотропный и адренокортикотропный гормоны), коркового слоя надпочечников (глюкокортикоиды), мужские половые гормоны (андрогены). Женские половые гормоны (эстрогены) снижают гемопо­эз, поэтому содержание эритроцитов, гемоглобина и тромбоцитов в крови женщин меньше, чем у мужчин. У мальчиков и девочек (до полового созревания) различий в картине крови нет, отсутствуют они и у людей старческого возраста.

9. КРОВООБРАЩЕНИЕ

Кровообращение представляет собой физиологические процессы, обеспечивающие непрерывное движение крови в орга­низме благодаря деятельности сердца и сосудов. Посредством крово­обращения достигается интеграция различных функций организма и его участие в реакциях на изменение окружающей среды.

9.1. СЕРДЦЕ И ЕГО ФИЗИОЛОГИЧЕСКИЕ СВОЙСТВА

Источником энергии, необходимой для продвижения крови по сосудам, является работа сердца. Оно представляет собой полый мышечный орган, разделенный продольной перегородкой на правую и левую половины. Каждая из них состоит из предсердия и желудочков, отделенных фиброзными перегородками. Одно­сторонний ток крови из предсердий в желудочки и оттуда в аорту и легочные артерии обеспечивается соответствующими клапанами, открытие и закрытие которых зависит от градиента давлений по обе их стороны.

111

Толщина стенок различных отделов сердца неодинакова и определяется их функциональной ролью. У левого желудочка она составляет 10-15 мм, у правого — 5-8 мм и у предсердий — 2-3 мм. Масса сердца равна 250-300 г, а объем желудочков — 250-300 мл. Сер­дце снабжается кровью через коронарные (венечные) артерии, начинающиеся у места выхода аорты. Кровь через них поступает только во время расслабления миокарда, количество кото­рой в покое составляет 200-300 мл , а при напряженной физи­ческой работе может достигать 1000 мл .

К основным свойствам сердечной мышцы относятся автоматия, возбудимость, проводимость и сократимость.

Автоматией сердца называется его способность к ритми­ческому сокращению без внешних раздражений под влиянием импуль­сов, возникающих в самом органе. Возбуждение в сердце возникает в месте впадения полых вен в правое предсердие, где нахо­дится так называемый синоатриальный узел (узел Кис-Фляка),являющийся главным водителем ритма серд­ца. Далее возбуждение по предсердиям распространяется до атриовентрикулярного узла (узел Ашоф-Тавара),расположенного в межпредсердной перегородке правого предсердия, затем по пуч­ку Гисса, его ножкам и волокнам Пуркинье оно проводится к мускулатуре желудочков.


Автоматия обусловлена изменением мембранных потен­циалов в водителе ритма, что связано со сдвигом концентрации ионов калия и натрия по обе стороны деполяризованных клеточных мембран. На характер проявления автоматии влияет содержание со­лей кальция в миокраде, рН внутренней среды и ее температура, не­которые гормоны (адреналин, норадреналин и ацетилхолин).

Возбудимость сердца проявляется в возникновении возбуждения при действии на него электрических, химических, тер­мических и других раздражителей. В основе процесса возбуждения лежит появление отрицательного электрического потенциала в пер­воначально возбужденном участке, при этом сила раздражителя долж­на быть не менее пороговой. Сердце реагирует на раздражитель по закону «Все или ничего», т. е. или не отвечает на раздражение, или отвечает сокращением максимальной силы. Однако этот закон прояв­ляется не всегда. Степень сокращения сердечной мышцы зависит не только от силы раздражителя, но и от величины ее предварительного растяжения, а также от температуры и состава питающей ее крови.

Возбудимость миокарда непостоянна. Б начальном периоде воз­буждения сердечная мышца невосприимчива (рефрактер­на) к повторным раздражениям, что составляет фазу абсолют­ной рефрактерности, равную по времени систоле сердца (0.2-0.3 с). Вследствие достаточно длительного периода абсолютной рефрактерности

112

сердечная мышца не может сокращаться по типу те­тануса, что имеет исключительно важное значение для координации работы предсердий и желудочков.

С началом расслабления возбудимость сердца начинает восста­навливаться и наступает фаза относительной рефрак­терности. Поступление в этот момент дополнительного импульса способно вызвать внеочередное сокращение сердца — экстрасис­толу. При этом период, следующий за экстрасистолой, длится боль­ше времени, чем обычно, и называется компенсаторной пау­зой. После фазы относительной рефрактерности наступает период повышенной возбудимости. По времени он совпадает с диастолическим расслаблением и характеризуется тем, что импульсы даже не­большой силы могут вызвать сокращение сердца.

Проводимость сердца обеспечивает распространение возбуждения от клеток водителей ритма по всему миокарду (рис. 18). Проведение возбуждения по сердцу осуществляется электрическим путем. Потенциал действия, возникающий в одной мышечной клет­ке, является раздражителем для других. Проводимость в разных уча­стках сердца неодинакова и зависит от структурных особенностей миокарда и проводящей системы, толщины миокарда, а также от тем­пературы, уровня гликогена, кислорода и микроэлементов в сердеч­ной мышце.