ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 18.01.2024
Просмотров: 54
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Медь используют в химическом и энергетическом машиностроении ввиду высокой электро- и теплопроводности, высокой коррозионной стойкости в некоторых агрессивных средах. Все эти свойства тем выше, чем выше чистота металла, что предъявляет особые требования к сварке изделий из чистой меди. Сварка бронз и латуней имеет свои особенности, но свойства чистой меди в этих сплавах уже значительно утрачены.
В зависимости от количественного содержания примесей, различают пять основных марок технической меди: М0 - с суммарным содержанием примесей не более 0,05%, М1 - не более 0,10%, М2 - не более 0,30%, М3 - не более 0,50% и М4 - с содержанием примесей не более 1,00%.
Физические и механические свойства меди М0:
плотность при 20оС, г/см3 | 8,94 |
температура плавления, оС | 1083 |
скрытая теплота плавления, Дж/г | 210 |
температура кипения, оС | 2595 |
скрытая теплота парообразования, Дж/г | 5375 |
удельная теплоёмкость, Дж/ (г*оС) | 0,38 |
теплопроводность при 20оС, Дж/ (см*с*оС) | 3,83 |
удельное электросопротивление, Ом*мм2/м | 0,018 |
температурный коэффициент электросопротивления | 0,004 |
модуль нормальной упругости, ГПа | 115 |
модуль сдвига, ГПа | 42,4 |
временное сопротивление разрыву при растяжении деформированной меди, МПа | 450 |
временное сопротивление разрыву при растяжении отожжённой меди, МПа | 220 |
предел текучести деформированной меди, МПа | 380 |
предел текучести отожжённой меди, МПа | 70 |
временное сопротивление разрыву при сжатии литой меди, МПа | 1570 |
относительное удлинение деформированной меди, % | 5 |
относительное удлинение отожжённой меди, % | 47 |
относительное сужение деформированной меди, % | 40 |
относительное сужение отожжённой меди, % | 70 |
твёрдость по Бринеллю деформированной меди, МПа | 120 |
твёрдость по Бринеллю отожжённой меди, МПа | 40 |
ударная вязкость литой меди при 20оС, кН*м | 1700 |
3.5 Влияние примесей на свойства меди
Алюминий неограниченно растворим в расплавленной меди; в твёрдом состоянии растворимость его равна 9,8%. Алюминий повышает коррозионную стойкость меди, уменьшает окисляемость и понижает электропроводность и теплопроводность меди.
Бериллий понижает электропроводность меди, повышает механические свойства и резко уменьшает окисляемость меди при повышенных температурах.
Висмут практически не растворим в меди. При повышенном содержании висмута медь делается хрупкой; на электропроводность меди висмут заметного влияния не оказывает.
Железо незначительно растворимо в меди в твёрдом состоянии. При 1050оС до 3,50% железа входит в твёрдый раствор, а при 635оС растворимость его падает до 0,15%. Под влиянием железа повышаются механические свойства меди, резко снижаются её электропроводность, теплопроводность и коррозионная стойкость.
Кислород очень мало растворим в меди в твёрдом состоянии. Он является вредной примесью, так как при повышенном его содержании заметно понижаются механические, технологические и коррозионные свойства меди.
Водород оказывает значительное влияние на медь. Растворимость его в меди зависит от температуры: от 0,06 до 13,6см3/100гр металла при температуре 500 и 1500оС соответственно. Особенно разрушительное воздействие водород оказывает на медь, содержащую кислород. Такая медь после отжига в водороде или восстановительной атмосфере, содержащей водород, делается хрупкой и растрескивается, вследствие образования водяных паров реакции водорода с закисью меди. Образовавшиеся водяные пары не диффундируют и не диссоциируют и, имея высокое давление, разрушают медь.
Мышьяк растворим в меди в твёрдом состоянии до 7,5%. Он значительно понижает электропроводность и теплопроводность, но значительно повышает жаростойкость меди.
Свинец практически не растворяется в меди в твёрдом состоянии. Заметного влияния на электропроводность и теплопроводность меди он не оказывает, но значительно улучшает её обрабатываемость резанием.
Серебро не оказывает влияния на технические свойства меди, мало влияет на её электропроводность и теплопроводность.
Сурьма растворима в меди в твёрдом состоянии при температуре эвтектики 6450С до 9,5%. Растворимость её резко уменьшается при понижении температуры. Сурьма значительно понижает электропроводность и теплопроводность меди.
Сера растворяется в расплавленной меди, а при затвердевании её растворимость снижается до нуля. Сера незначительно влияет на электропроводность и теплопроводность меди, заметно снижает пластичность. Под влиянием серы значительно улучшается обрабатываемость меди резанием.
Фосфор ограничено растворим в меди в твёрдом состоянии; предел насыщения твёрдого α-раствора при температуре 700оС достигает 1,3% фосфора, а при 200оС он снижается до 0,4%. Фосфор значительно понижает электропроводность и теплопроводность меди, но положительно влияет на механические свойства и свариваемость, повышает жидкотекучесть.
Теллур растворим в меди в твёрдом состоянии до 0,01%. На электропроводность меди теллур значительного влияния не оказывает.
Селен мало растворим в меди в твёрдом состоянии - до 0,1% и выделяется при затвердевании в виде соединения Se2О. Влияние на медь аналогично влиянию серы.
Хорошие результаты можно получить при наплавке под флюсом плавящимся электродом, подающимся автоматической головкой, совершающей колебания в плоскости, перпендикулярной к поступающему движению. Стальную поверхность можно охлаждать со стороны, противоположной наплавке, или охлаждать непосредственно металл наплавки водоохлаждаемыми устройствами.
При наплавке меди в среде аргона плавящимся электродом следует соблюдать аналогичные условия. При сварке меди со сталью плавящимся электродом надо электрод отклонять в сторону меди, так как магнитное дутье в процессе сварки будет возвращать дуговой разряд на свариваемые кромки. При сварке необходимо применять минимальные токи, обеспечивающие формирование сварного шва. Сварку биметалла медь - сталь можно осуществлять со стороны плакирующего слоя или со стороны стали.
В первом случае неизбежны удаление плакирующего слоя на стыкуемых кромках, сварка стали, зачистка полученного шва и наплавка меди на сталь для восстановления плакирующего слоя. При возможности сварки со стороны стали плакирующий медный слой в зоне сварки не удаляют; после сварки стали производят заварку стыка на плакирующем слое любым способом.
Библиографический список
-
1. Эльтермап В.М. Охрана окружающей среды на химических и нефтехимических предприятиях. М.: Химия, 1985.160 с, -
2. Лейкан И.И. Рассеивание вентиляционных выбросов химических предприятий. М.: Хнмня, 1982.224 с. -
3. Перегуд Е.А. Санитарно-химический контроль воздушной среды. Л.: Химия, 197S.336 с. -
4. Наркевич И.П., Печковский В.В. Утилизация и ликвидация отходов в технологии неорганических веществ, М,; Химия, 1984, 240 с. -
5. Экологические проблемы химического предприятия/О.Г. Воробьев, О.С. Балабеков, Ш, М. Молдабеков, Б.Ф. Уфимцев. Алма-Ата: Казахстан, 1984.172 с. -
6. С. Калверт, М. Треиюу и др. Защита атмосферы от промышленных загрязнении/Под ред. С, Калверта и Г.М. Инглунда. В 2-х т. М.: Металлургия, 1988, 1470 с, -
7. Техника защиты окружающей средьт / Н.С. Торочешников, А.И. Родионов, Н.В. Кедьцев, В.Н. Клушин. М.: Химия, 1981.368 с, -
8. Стадницкий Г.В., Родионов А.И. Экология. М.; Высшая школа, 1988.272 с. -
9. Ужов В.Н., Вальдберг А.Ю. Очистка газов мокрыми фильтрами. М,: Химия, 1972, 248 с. -
10. Страус В. Промышленная очистка газов: Пер. с англ. М,: Химия, 1981.616 с. -
11. Быстрое Г.А., Гслыгерин В. М" Титов Б.И. Обезвреживание и утилизация отходов в производстве пластмасс. Л,; Химия, 1982.264 с. -
12. Т.А. Семенова, И.Л. Лейтес, Ю.В. Аксельрод и др. Очистка технологических газов/Под ред. Т.А. Семеновой. М; Химия, 1977.488 с. -
13. Кузнецов И.Е., Троицкая Т.М. Защита воздушного бассейна от загрязнения вредными веществами. М.: Химия, 1979.344 с. -
14. Алтыбаев М.А. Разработка и внедрение хемосорбционной очистки промышленных газов от сернистых и фосфорных соединений в псевдоожиженном слое с утилизацией продуктов очистки: Дне. д-ра техн. наук, Ташкент, 1989.406 с. -
15. Очистка газов в производстве фосфора и фосфорных удобрений/Э.Я. Тарат, О. Г, Воробьев, О.С. Балабеков, В.И. Быков, О.Г. Ковалев/Под ред.Э.Я. Тарата. Л.: Химия, 1979.208 с. -
16. А.А. Соколовский, Т. И, Унанянц. Краткий справочник по минеральным удобрениям, - М.: Химия, 1977.376 с. -
17. Абсорбция и пылеулавливание в производстве минеральных удобрений/ И.П. Мухленов, О.С. Ковалев, А.Ф. Туболкин, О.С. Балабеков и др. / Под ред. И.П. Мухленова и О.С. Ковалева. М.: Химия, 1987.208 с. -
18. Бесков С.Д. Технохимические расчеты. М.: Высшая школа, 1966.520 с. -
19. Коузов П.А., Малыгин А.Д., Скрябин Г.М. Очистка от пыли газов и воз-духа в химической промышленности. Л,: Химия, 1982.256 с. -
20. Бродский Ю. Н, Определение экономико-экологической эффективности систем газоочистки и пылеулавливания // Химическое инефтяное машиностроение. 1986. № 2. С.3-4. -
21. 21. Stalrmand С. J, Chemical Engineer, СЕ.310 (1965). -
22. Карнаухов И.А., Доронин В.И. Цирульников П.Г. Экономический анализ технологических параметров каталитического обезвреживания газовых выбросов // Хим. пром-сть. 1988. № I. С.55-56.