Файл: Учебники более чем по 300 предметам. Quator ru Все лучшее студентам!.pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 04.02.2024

Просмотров: 715

Скачиваний: 3

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Quator.ru –студенческий портал России. Учебные материалы для студентов: лекции, шпоры, конспекты, учебники более чем по 300 предметам.
Quator.ru – Все лучшее студентам!
Происходит торможение и вдумывание в странность этих узлов («как возможно бытие простейших предметов понимания -слова, числа и т.д.?»). Эти загадочно-пословичные узлы в челноке «сознание -мышление - сознание», эти исходные предметы («точки») удивления и должны стать «спорами» («зачатками») спора... во всех последующих классах
- возрастах - культурах.
А. Загадки слова. Учитель должен быть внимательным - «ушки на макушке» -к таким ребячьим открытиям и трудностям: слово как момент высказывания – в разных «речевых жанрах» (ср. Бахтин), слово как - одновременно - момент предложения в жесткой системе грамматических правил, слово - в его самобытийности, в его внутриречевой слитности и неразделимости. Соответственно - слово и сам язык - как основа сообщения, информации
(о чем-то...) в споре с идеей слова, языка, речи, в его самовслушивающемся смысле, как основа рефлексии, самоотстранения, в споре, далее, с поэтической, образной,
«заклинающей» силой слова и речи.
Б. Загадки числа. Рождение идеи числа, математического отношения к миру, к «третьему миру» Поппера, в сопряжении и диалоге процессов 1) измерения (по отношению к континуальным протяжениям во времени и пространстве), 2) счета дискретных, единичных, неделимых (иначе это уже иные предметы) вещей, «атомов», «монад», и наконец, 3) напряжения (степени...) - температуры, мускульного усилия и т.д. Число - как невозможное сочетание, перекресток этих, как минимум, «трех» форм идеализации.
В. Загадки явления природы. Отдельное самостоятельное явление (росток, трава, лист, дерево, ветер, река, волна, звезда, земля, солнце...) и природная целостность - почва и воздух, и солнце, сосредоточенная в ростке, в траве, в дереве... Бесконечная Вселенная и -
Земля, планета..., «капля, все в себя вбирающая», и - отдельный от нее мир... Предмет природы - ее часть (частность, особенность, проявление) и - ее начало, возможность, исток... Предмет - образ целого. Неразделимость того, что в будущем курсе станет основой отдельных отраслей естествознания - механики, физики, биологии, химии и т.д., и
- предрасположенность этих расхождений.
Г. Загадки Я-сознания. Эти загадки имеют особый смысл во всем строении учебного курса
1-2 классов. Здесь формируется, укореняется и становится странным для самого себя
(остраняется) основной субъект обучения в нашей школе -ученик.
Если семии восьмилетний человек не станет странным для самого себя, не удивит - себя - природой, словом, числом, а главное - своим собственным образом как обучающегося
(обучающего себя), то есть нечто мучительно не знающего, точнее - не понимающего, но страшно желающего понять, - если всего этого не произойдет, - то вся идея нашей школы обречена на провал.
Д. Загадки момента истории. Теперь - не только личная память, но -память о бывшем до меня и без меня и соотнесение этой памяти с памятью о том, что происходило со мной, что есть грань моего Я... «Наследственность» (генетическая и историческая). Вектор прохождения невозвратных мгновений и жизней и -замыкание на феномен культуры
(произведение). Время и вечность. Типы историзма (эти типы будут затем развернуты в
«циклах культуры»). Интерес к генеалогии. История и ее памятники. Накопление «знаний, умений, навыков» в Движении истории и, с другой стороны, развитие способности расти
«корнями вверх», перерешать свое прошлое. История и - культура. Загадка двух форм исторического понимания: «как это было...» и «как это могло быть...». Точки рождения и


Quator.ru –студенческий портал России. Учебные материалы для студентов: лекции, шпоры, конспекты, учебники более чем по 300 предметам.
Quator.ru – Все лучшее студентам! смерти - точки смыкания загадок «Я-сознания» и загадок истории. Календари, их спектр и
«дополнительность».
■Игровые средоточия
Основной смысл этих средоточий - метод «физических действий» (ср. Станиславский) , по-своему готовящий ученика к его роли субъекта учебной деятельности. Это - новая грань между сознанием и мышлением, грань по линии: игра (дошкольная) - культурная деятельность. Предполагаются такие средоточия:
A. Физические игры, гимнастика с особым развитием самостоятельных форм ритма как одного из существенных истоков, полюсов музыки.
Б. Словесные игры с элементами поэтики (ср. загадки слова) и с особым вниманием к интонационной составляющей речи (интонация - второй исток музыкальной антитезы, ее мелодийная грань).
B. Художественный образ - в субъективных средоточиях глаза и руки, в объ ективном воплощении на полотне, в глине, камне, в графическом ритме линий, в за чатках архитектурного видения. Изображение. Воображение.
Г. Элементы ручного труда, ремесла.
Д. Музыка (со второго класса) рождается в сопряжении ритма и интонации-мелодии, музыкального инструмента и пения, исполнения и импровизации.
Е. Театр. Обычное театральное действо. Углубление в театральность бытия. Школа как театр.
• Методические особенности урока-диалога.
• Переопределение общей учебной проблемы каждым учащимся. Порождение им своего вопроса как загадки, трудности, который пробуждает мысль, а не снимает проблемы.
• Смысл в постоянном воспроизведении ситуации «ученого незнания», в сгущении своего видения проблемы, своего неустранимого вопроса - парадокса.
• Выполнение мысленных экспериментов в пространстве образа, выстроенного учеником.
Цель - не решить проблему, а углубить ее, вывести на вечные проблемы бытия.
Позиция учителя. Ставя учебную проблему, учитель выслушивает все варианты и переопределения. Учитель помогает проявить различные формы логики разных культур, помогает выявить точку зрения и поддерживается культурными концепциями.
Позиция ученика. Ученик в учебном диалоге оказывается в промежутке культур.
Сопряжение требует удерживать собственное видение мира ребенком до поступка. В начальной школе необходимо наличие многочисленных построений-монстров (попытка посмотреть на предмет и мир в целом).
Примечание. Диалог культур как технология имеет несколько опубликованных инструментованных вариантов: а) преподавание в режиме диалога курса «Мировая


Quator.ru –студенческий портал России. Учебные материалы для студентов: лекции, шпоры, конспекты, учебники более чем по 300 предметам.
Quator.ru – Все лучшее студентам! художественная культура» (Л.М.Предтеченская); б) взаимосвязанное преподавание литературы и истории (С.В.Селеменов. А.А.Ткаченко); в) преподавание по четырехпредметному синхронизированному программному комплексу (Н.Н. Пайков).
Литература
1. Афанасьев И. Учебное незнание и точки удивления // Учительская газета. -1993. - №46.
2. Бер.лянд И.Е., Курганов СЮ. Математика в школе «диалога культур». - Кемерово:
Алегро, 1993.
3. Библер B.C. Мышление как творчество. - М., 1975.
4. Библер B.C. Школа «диалога культур» // Советская педагогика. -1989. №2.
5. Кларин М.В. Инновации в мировой педагогике. - Рига, 1995.
6. Кларин М.В. Учебная дискуссия // Мир образования. -1996. - N» 1.
7. Курганов СЮ. Ребенок и взрослый в учебном диалоге // Народное образование. -
1989. -№ 2,4,5.
8. Курганов СЮ. Ребенок и взрослый в учебном диалоге. - М.: Просвещение, 1989.
9. Курганов СЮ. Экспериментальная программа школы «диалога культур». 1- 4 классы. - Кемерово: Алегро, 1993.
10. Предтеченская Л.М. Мировая художественная культура. - М., 1995.
11. Селевко Г.К. Основы молекулярно-кинетической теории // Вечерняя средняя школа. -1967. - №3.
12. Селеменов СВ., Ткаченко А.А. Школа диалога культур: что это? // Школьные технологии. -1996. - №3.
13. Сериков В.В. Личностно-ориентированное образование // Педагогика. - 1994. -
№5.
14. Школа диалога культур / Под ред. B.C. Библера. - Кемерово, 1993.
15. Школа диалога культур: основы программы / Под ред. В.СБиблера. - Кемерово, 1992.
7.3. Укрупнение дидактических единиц - УДЕ (П.М. Эрдниев)
Я выбрал борьбу против очевидностей, т.е. против всемогущества невозможностей.
Л. Шестов
Эрдниев Пюрвя Мучкаевич - академик РАО, заслуженный деятель науки РСФСР.
Обосновал эффективность укрупненного введения новых знаний, позволяющего:

Quator.ru –студенческий портал России. Учебные материалы для студентов: лекции, шпоры, конспекты, учебники более чем по 300 предметам.
Quator.ru – Все лучшее студентам!
- применять обобщения в текущей учебной работе на каждом уроке;
- устанавливать больше логических связей в материале;
- выделять главное и существенное в большой дозе материала;
- понимать значение материала в общей системе ЗУН;
- выявить больше межпредметных связей;
- более эмоционально подать материал;
- сделать более эффективным закрепление материала.
Классификационные параметры
По уровню применения: общепедагогическая.
По основному фактору развития: социогенная.
По концепции усвоения: ассоциативно-рефлекторная с элементами поэтапной интериоризации.
По ориентации на личностные структуры: информационная с элементами операционной.
По характеру содержания: обучающая, светская, технократическая, общеобразовательная.
По типу управления: система малых групп.
По организационным формам: классно-урочная, академическая, групповая - индивидуальная.
По подходу к ребенку: дидактоцентрическая.
По преобладающему методу: объяснительно-иллюстративная.
По направлению модернизации: дидактическое реконструирование.
По категории обучаемых: массовая + продвинутая.
Целевые ориентации
• Достижение целостности математических знаний как главное условие развития и саморазвития интеллекта учащихся.
• Создание информационно более совершенной последовательности разделов и тем школьных предметов, обеспечивающее их единство и целостность.
• Сверхзадача: вооружить девятилетнюю школу страны едиными учебниками математики
(на базе рационального синтеза учебников алгебры, геометрии и черчения).


Quator.ru –студенческий портал России. Учебные материалы для студентов: лекции, шпоры, конспекты, учебники более чем по 300 предметам.
Quator.ru – Все лучшее студентам!
Концептуальные положения
Понятие «укрупнение единицы усвоения» достаточно общее, его можно представить как интеграцию конкретных подходов к обучению:
1) совместно и одновременно изучать взаимосвязанные действия, операции, функции, теоремы и т.п. (в частности, взаимно обратные);
2) обеспечение единства процессов составления и решения задач (уравнений!, неравенств и т.п.);
3) рассматривать во взаимопереходах определенные и неопределенные задания (в частности, деформированные упражнения);
4) обращать структуру упражнения, что создает условия для противопоставления исходного и преобразованного заданий;
5) выявлять сложную природу математического знания, достигать системности знаний;
6) принцип дополнительности в системе упражнений (понимание достигается в результате межкодовых переходов образного и логического в мышлении, сознательного и подсознательного компонентов).
При этом используются фундаментальные закономерности мышления (вкупе оптимизирующие познавательный процесс):
• закон единства и борьбы противоположностей;
• перемежающееся противопоставление контрастных раздражителей (И.П.Павлов);
• принцип обратных связей, системности и цикличности процессов (П.К.Анохин), обратимости операций (Ж.Пиаже);
• переход к сверхсимволам, т.е. оперирование более длинными последователь ностями символов (кибернетический аспект).
Укрупненная дидактическая единица - УДЕ - это локальная система понятий, объединенных на основе их смысловых логических связей и образующих целостно усваиваемую единицу информации.
В отличие от гештальтистов П.М.Эрдниев рассматривает целостные образы, формирующиеся в результате обучения, как постаналитические. Им предшествует стадия анализа, разложения первоначально целостных образов, выделения в воспринимаемом объекте его элементов и их взаимоотношений.
Обучение строится по следующей схеме:
1) Стадия усвоения недифференцированного целого в его первом приближении.
2) Выделение в целом элементов и их .взаимоотношений.

1   ...   15   16   17   18   19   20   21   22   ...   36

Quator.ru –студенческий портал России. Учебные материалы для студентов: лекции, шпоры, конспекты, учебники более чем по 300 предметам.
Quator.ru – Все лучшее студентам!
3) Формирование на базе усвоенных элементов и их взаимоотношений более совершенного и точного целостного образа.
Особенности содержания
В XX в. в школьном расписании встречались пять составляющих (предметов) единой науки математики: арифметика, геометрия, алгебра, тригонометрия, черчение, причем по некоторым предметам печаталось две книги (учебник и задачник). П.М.Эрдниев объединил в одном учебнике «Математика» все эти предметы, а также теорию и упражнения.
В едином учебнике осуществляется синтез планиметрии и стереометрии, при этом классические разделы геометрии получают новую, координатную характеристику.
В едином учебнике широко используются умозаключения по аналогии - важнейшему элементу творческого мышления. Упражнения приводятся по каждому логически завершенному параграфу (уроку, занятию).
Учащимся предлагается: а) изучать одновременно взаимно обратные действия и операции: сложение и вычитание, умножение и деление, возведение в степень и извлечение корня, заключение в скобки и раскрытие скобок, логарифмирование и потенцирование и т.п.; б) сравнивать противоположные понятия, рассматривая их одновременно: прямая и обратная теоремы; прямая и противоположная теоремы; прямая и обратная функции; периодические и непериодические функции; возрастающие и убывающие функции; неопределенные и «определенные» уравнения: непротиворечивые и противоречивые уравнения, неравенства; прямые и обратные задачи вообще; в) сопоставлять родственные и аналогичные понятия: уравнения и неравенства, арифметические и геометрические прогрессии, одноименные законы и свойства действий первой и второй ступени; определения и свойства синуса и косинуса, свойства прямой и обратной пропорциональности и т.д.; г) сопоставлять этапы работы над упражнением, способы решения, на пример: графическое и аналитическое решение системы уравнений: аналитический и синтетический способы доказательства теорем (решения задач); геометрическое и аналитическое (через координаты) определение вектора; доказательство «рассуждением» и с помощью граф-схемы и т.п.