Файл: Пеноуз Роджер. Тени разума. В поисках науки о сознании.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 29.06.2024

Просмотров: 728

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Роджер пенроуз

1.2. Спасут ли роботы этот безумный мир?

1.3. Вычисление и сознательное мышление

1.4. Физикализм и ментализм

1.5. Вычисление: нисходящие и восходящие процедуры

1.6. Противоречит ли точка зрения в тезису Черча—Тьюринга?

1.7. Хаос

1.8. Аналоговые вычисления

1.9. Невычислительные процессы

1.10. Завтрашний день

1.11. Обладают ли компьютеры правами и несут ли ответственность?

1.12. «Осознание», «понимание», «сознание», «интеллект»

1.13. Доказательство Джона Серла

1.14. Некоторые проблемы вычислительной модели

1.15. Свидетельствуют ли ограниченные возможности сегодняшнего ии в пользу ?

1.16. Доказательство на основании теоремы Гёделя

1.17. Платонизм или мистицизм?

1.18. Почему именно математическое понимание?

1.19. Какое отношение имеет теорема Гёделя к «бытовым» действиям?

1.20. Мысленная визуализация и виртуальная реальность

1.21. Является ли невычислимым математическое воображение?

Примечания

2 Геделевское доказательство

2.1. Теорема Гёделя и машины Тьюринга

2.2. Вычисления

2.3. Незавершающиеся вычисления

2.4. Как убедиться в невозможности завершить вычисление?

2.5. Семейства вычислений; следствие Гёделя — Тьюринга

2.6. Возможные формальные возражения против

2.7. Некоторые более глубокие математические соображения

2.8. Условие -непротиворечивости

2.9. Формальные системы и алгоритмическое доказательство

2.10. Возможные формальные возражения против (продолжение)

Примечания

Приложение а: геделизирующая машина тьюринга в явном виде

3 О невычислимости в математическом мышлении

3.1. Гёдель и Тьюринг

О психофизи(ологи)ческой проблеме

Р.Пенроуз. Тени ума: в поисках потерянной науки о сознании. Penrose r. Shadows of the mind: a search for the missing science of consciousness. - Oxford, 1994. - XVI, 457 p.

Утверждения, о каких говорится в Q11, действительно, су­ществуют. То есть существуют Щ -высказывания, единственные известные доказательства которых опираются на то или иное применение теории бесконечных множеств. Такое Щ -высказы­вание может быть результатом арифметического кодирования утверждения типа «аксиомы формальной системы F являются непротиворечивыми», где система F подразумевает манипуля­ции обширными бесконечными множествами, само существова­ние которых может быть сомнительным. Математик, убежденный в реальном существовании некоторого достаточно обширного неконструктивного множества S, придет к выводу, что система F действительно непротиворечива, тогда как другой математик, ко­торый полагает, что множества S не существует, вовсе не обя­зан считать систему F непротиворечивой. Таким образом, даже ограничив рассмотрение одним вполне определенным вопросом о завершении или незавершении работы машины Тьюринга (т. е. ложности или истинности П1-высказываний), мы не можем се­бе позволить не учитывать субъективности убеждений в от­ношении, скажем, существования некоторого обширного некон­структивно-бесконечного множества S. Если различные матема­тики используют для установления истинности определенных П1 -высказываний неэквивалентные «персональные алгоритмы», то, по-видимому, с моей стороны несправедливо говорить о про-. сто «математиках» или «математическом сообществе».

Полагаю, что в строгом смысле это действительно может быть несколько несправедливо; и читатель может при желании перефразировать вывод  следующим образом:

* Для установления математической истины ни один отдельно взятый математик не применяет только те алгоритмы, какие он (или она) полагает обоснованными. j

Представленные мною доводы по-прежнему остаются в силе, од­нако, мне кажется, некоторые из более поздних утратят значи­тельную часть своей силы, если представить ситуацию в таком виде. Более того, в случае формулировки * все доказатель­ство уходит в направлении, на мой взгляд, бесперспективном, сосредоточенном, в большей степени, на конкретных механизмах, управляющих действиями конкретных индивидуумов, нежели на принципах, лежащих в основе действий любого из нас. Меня же на данном этапе интересует не столько различия подходов от­дельных математиков к той или иной математической проблеме, сколько то общее, что есть между нашим пониманием и нашим математическим восприятием.


Попытаемся разобраться, действительно ли мы вынужде­ны принять формулировку *. В самом ли деле суждения мате­матиков настолько субъективны, что они могут принципиально расходиться при установлении истинности какого-то конкрет­ного III-высказывания? (Разумеется, доказательство, устанав­ливающее истинность hi-высказывания, может быть просто-напросто быть слишком громоздким или слишком сложным, что­бы его мог воспроизвести тот или иной математик (см. ниже по тексту возражение Q12), т.е. на практике математики вполне могут разойтись во мнениях. Однако в данном случае нас ин­тересует вовсе не это. Мы занимаемся исключительно принци­пиальными вопросами.) Вообще говоря, математическое дока­зательство есть вещь не настолько субъективная, как может по­казаться на основании вышесказанного. Математики могут при­держиваться самых разных — и, на их взгляд, неопровержимо истинных — точек зрения по тем или иным фундаментальным вопросам и во всеуслышание объявлять об этом, однако едва дело доходит до доказательств или опровержений каких-либо вполне определенных конкретных hi-высказываний, все разно­гласия тут же куда-то исчезают. Никто не воспримет всерьез доказательство hi-высказывания, утверждающего, по сути сво­ей, непротиворечивость некоторой формальной системы F, если математик будет основывать его только лишь на существовании некоего спорного бесконечного множества S. То, что при этом в действительности доказывается, можно сформулировать следу­ющим, куда более приемлемым, образом: «Если множество S су­ществует, то формальная система F является непротиворечивой, и в этом случае данное П1-высказывание истинно».

Тем не менее, могут быть и исключения: например, один ма­тематик полагает, что некоторое неконструктивно-бесконечное множество S «с очевидностью» существует — или, по крайней мере, что допущение о его существовании никоим образом не приводит к противоречию, — другой же математик никакой оче­видности здесь не усматривает. Дискуссии математиков по таким фундаментальным вопросам могут порой принимать поистине неразрешимый характер. При этом обе стороны могут оказаться, в принципе, неспособны сколько-нибудь убедительно изложить свои доказательства, даже в отношении П1-высказываний. Воз­можно, каждому математику и в самом деле присуще некое осо­бое внутреннее восприятие истинности утверждений, связанных с неконструктивно-бесконечными множествами. Конечно же, ма­тематики нередко заявляют о том, что их восприятие таких вещей в корне отличается от восприятия коллег. Однако я по­лагаю, что такие различия, по сути своей, подобны различиям в ожиданиях, которые различные математики могут иметь и в отношении истинности обычных математических высказываний. Эти ожидания суть всего лишь предварительные предположения. До тех пор, пока не представлено убедительного доказательства или опровержения, математики могут спорить друг с другом об ожидаемой или предполагаемой истинности того или иного по­ложения, однако представление такого доказательства одним из математиков убеждает (в принципе) всех. Что до фундаменталь­ных вопросов, то там этих доказательств как раз нет. Возможно, и не будет. Быть может, их нельзя отыскать по той причине, что их просто-напросто нет, а фундаментальные вопросы допускают существование различных, но равно справедливых точек зрения. Здесь, однако, следует подчеркнуть еще один связанный с hi-высказываниями момент. Возможность наличия у матема­тика ошибочной точки зрения — т. е. такой точки зрения, кото­рая вынуждает его делать неверные выводы в отношении истин­ности тех или иных П1-высказываний, — нас в данный момент не интересует. Нет ничего невероятного в том, что математики порой опираются на неверное в фактическом отношении «пони­мание» — а то и на необоснованные алгоритмы, — только к настоящему обсуждению это никакого отношения не имеет, поскольку согласуется с выводом У. Впрочем, эту ситуацию мы подробно рассмотрим ниже, в § 3.4. Следовательно, дело в данном случае заключается не в том, могут ли разные математи­ки придерживаться противоречащих, одна другой точек зрения, а скорее в том, может ли одна точка зрения оказаться, в принципе, мощнее другой. Каждая такая точка зрения будет совершенно справедлива в том, что касается установления истинности П1-высказываний, однако какая-то из них сможет, в принципе, дать своим последователям возможность установить, что те или иные вычисления не завершаются, тогда как другие, более слабые, точки зрения на это неспособны; то есть одни математики будут обладать существенно большей способностью к пониманию, нежели другие.


Не думаю, что такая возможность представляет собой сколь­ко-нибудь серьезную угрозу для моей первоначальной формули­ровки . Хотя в отношении бесконечных множеств математики и вправе придерживаться различных точек зрения, этих самых точек зрения вовсе не так много: по всей видимости, не бо­лее пяти. Существенные в этом смысле расхождения могут быть обусловлены лишь утверждениями, подобными аксиоме выбора (о ней говорилось в комментарии к возражению Q10), которую одни полагают «очевидной», другие же напрочь отвергают свя­занную с ней неконструктивность. Любопытно, что эти различ­ные точки зрения на собственно аксиому выбора не приводят непосредственно к тому П1-высказыванию, относительно спра­ведливости которого возникают разногласия. Ибо, независимо от своей предполагаемой «истинности» или «ложности», аксиома выбора, как показывает теорема Гёделя—Коэна(см. комментарий к Q10), не вступает в противоречие со стандартными аксиома­ми системы ZF. Могут, однако, существовать и другие спорные аксиомы, соответствующей теоремы для которых нет. Впрочем, обыкновенно, когда речь заходит о принятии или опровержении той или иной теоретико-множественной аксиомы — назовем ее аксиомой Q, — утверждения математиков принимают следую­щий вид: «Из допущения справедливости аксиомы Q следует, что ... ». Такое утверждение при всем желании не сможет стать предметом спора между математиками. Аксиома выбора, похоже, является исключением в том смысле, что ее справедливость часто подразумевается без приведения упомянутой оговорки, однако это обстоятельство, по-видимому, никак не противоречит моей общей объективной формулировке вывода  — при условии, что мы ограничимся только П1-высказываниями:

Для установления истинности П1-высказываний математики-люди не применяют заведомо обоснован­ные алгоритмы, а этого нам в любом случае вполне достаточно.

Есть ли другие спорные аксиомы, которые одни математи­ки считают «очевидными», а другие ставят под сомнение? Ду­маю, будет огромным преувеличением сказать, что имеется хотя бы десять существенно различных точек зрения на теоретико-множественные допущения, которые в явном виде как допущения не формулируются. Положим, что их не более десяти, и рассмот­рим следствия из этого допущения. Это означает, что существует порядка десяти, по сути, различных классов математиков, раз­личаемых по типу рассуждения в отношении бесконечных мно­жеств, который они полагают «очевидно» истинным. Каждого та­кого математика можно назвать математиком n-го класса, где n изменяется в весьма узком диапазоне — не более десяти значе­ний. (Чем больше номер класса, тем мощнее будет точка зрения принадлежащих к нему математиков.) Вывод ** принимает в этом случае следующий вид:


Для установления истинности ГЦ –высказываний математики-люди n-го класса (где n может принимать лишь несколько значений) не применяют только те алгоритмы, какие они полагают обоснованными.

Так получается, потому что доказательство Гёделя(— Тьюринга) можно применять к каждому классу отдельно. (Важно понять, что само гёделевское доказательство предметом спора между ма­тематиками не является, а потому если для любого математика nго класса гипотетический алгоритм n-го класса будет познаваемо обоснованным, то доказательство приведет к противоречию.) Та­ким образом, как и в случае с , дело вовсе не в существовании какого-то невообразимого количества непознаваемо обоснован­ных алгоритмов, каждый из которых присущ лишь одному кон­кретному индивидууму. Мы всего лишь исключаем возможность существования некоторого очень небольшого количества неэкви­валентных непознаваемо обоснованных алгоритмов, рассортиро­ванных в соответствии с их мощностью и образующих в результа­те различные «школы мышления». В последующем обсуждении различия между вариантами  и  либо  не будут иметь особого значения, поэтому для упрощения изложения я не стану в дальнейшем их как-то различать и буду использовать для них всех одно общее обозначение .

Q12. Вне зависимости оттого, насколько различных точек зрения придерживаются математики в прин­ципе, на практике те же математики обладают весьма разными способностями к воспроизведению доказательств, разве не так? Не менее различны и их способности к пониманию, позволяющие им совершать математические открытия.

Безусловно, так оно и есть, однако к рассматриваемому во­просу все эти вещи не имеют ну абсолютно никакого отноше­ния. Меня не интересует, какие именно и насколько сложные до­казательства математик способен воспроизвести на практике. Еще меньше меня занимает вопрос о том, какие доказательства математик может на практике открыть или какие понимание и вдохновение могут ему в этом способствовать. Здесь мы говорим исключительно о том, доказательства какого типа математики могут, в принципе, воспринимать как обоснованные.


Оговорка «в принципе» используется в наших рассужде­ниях отнюдь не просто так. Если допустить, что некий матема­тик располагает доказательством или опровержением некоторо­го III -высказывания, то его разногласия с другими математиками касательно обоснованности данного доказательства разрешимы только в том случае, если у этих самых других математиков хватит времени, терпения, объективности, способностей и решимости с вниманием и пониманием воспроизвести всю — возможно, длин­ную и хитроумную — цепочку его рассуждений. На практике же математики вполне могут отказаться от всех этих трудов еще до полного разрешения спорных вопросов. Однако подобные про­блемы к данному исследованию отношения не имеют. Так как, по всей видимости, существует все же некий вполне определенный смысл, в котором то, что в принципе постижимо для одного мате­матика, оказывается равным образом (если отвлечься на время от возражения Q11) постижимо и для другого, — вообще, для лю­бого человека, способного мыслить. Рассуждения бывают весьма громоздкими, а участвующие в них концепции могут показаться чересчур тонкими или туманными, и тем не менее существуют достаточно убедительные основания полагать, что способность к пониманию одного человека не включает в себя ничего такого, что в принципе недоступно другому человеку. Это применимо и к тем случаям, когда для воспроизведения во всех подробностях чисто вычислительной части доказательства может потребовать­ся помощь компьютера. Возможно, не совсем разумно ожидать, что математик-человек будет лично выполнять все необходимые для такого доказательства вычисления, и все же он, вне всякого сомнения, сможет без особого труда понять и проверить каждый отдельный его этап.

Здесь я говорю исключительно о сложности математическо­го доказательства и ни в коем случае не о возможных существен­ных и принципиальных вопросах, которые могут вызвать среди математиков разногласия в отношении выбора допустимых ме­тодов рассуждения. Разумеется, я встречал математиков, утвер­ждавших, что они в своей практике сталкивались с такими ма­тематическими доказательствами, которые были совершенно вне их компетенции: «Я уверен, что, сколько бы я ни старался, мне никогда не понять того-то или такого-то; этот метод рассужде­ния мне не по зубам». В каждом конкретном случае подобного заявления необходимо индивидуально решать, действительно ли данный метод рассуждения в принципе выходит за рамки систе­мы убеждений этого математика — каковой случай мы рассмат­ривали в комментарии к возражению Q11, — или он вообще-то смог бы разобраться в принципах, на которых основано это доказательство, если бы только приложил больше сил и затра­тил больше времени. Как правило, справедливым оказывается последнее. Более того, источником отчаяния нашего математи­ка чаще всего становится туманный стиль изложения или огра­ниченные лекторские способности «такого-то», а вовсе не то, что какие-то существенные и принципиальные моменты «того-то» действительно выходят за рамки его способностей. Толковое изложение, на первый взгляд, непонятного предмета чудесным образом устраняет все прежние недоразумения.