Файл: Пеноуз Роджер. Тени разума. В поисках науки о сознании.doc
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 29.06.2024
Просмотров: 728
Скачиваний: 0
СОДЕРЖАНИЕ
1.2. Спасут ли роботы этот безумный мир?
1.3. Вычисление и сознательное мышление
1.5. Вычисление: нисходящие и восходящие процедуры
1.6. Противоречит ли точка зрения в тезису Черча—Тьюринга?
1.9. Невычислительные процессы
1.11. Обладают ли компьютеры правами и несут ли ответственность?
1.12. «Осознание», «понимание», «сознание», «интеллект»
1.13. Доказательство Джона Серла
1.14. Некоторые проблемы вычислительной модели
1.15. Свидетельствуют ли ограниченные возможности сегодняшнего ии в пользу ?
1.16. Доказательство на основании теоремы Гёделя
1.17. Платонизм или мистицизм?
1.18. Почему именно математическое понимание?
1.19. Какое отношение имеет теорема Гёделя к «бытовым» действиям?
1.20. Мысленная визуализация и виртуальная реальность
1.21. Является ли невычислимым математическое воображение?
2.1. Теорема Гёделя и машины Тьюринга
2.3. Незавершающиеся вычисления
2.4. Как убедиться в невозможности завершить вычисление?
2.5. Семейства вычислений; следствие Гёделя — Тьюринга
2.6. Возможные формальные возражения против
2.7. Некоторые более глубокие математические соображения
2.8. Условие -непротиворечивости
2.9. Формальные системы и алгоритмическое доказательство
2.10. Возможные формальные возражения против (продолжение)
Приложение а: геделизирующая машина тьюринга в явном виде
3 О невычислимости в математическом мышлении
Утверждения, о каких говорится в Q11, действительно, существуют. То есть существуют Щ -высказывания, единственные известные доказательства которых опираются на то или иное применение теории бесконечных множеств. Такое Щ -высказывание может быть результатом арифметического кодирования утверждения типа «аксиомы формальной системы F являются непротиворечивыми», где система F подразумевает манипуляции обширными бесконечными множествами, само существование которых может быть сомнительным. Математик, убежденный в реальном существовании некоторого достаточно обширного неконструктивного множества S, придет к выводу, что система F действительно непротиворечива, тогда как другой математик, который полагает, что множества S не существует, вовсе не обязан считать систему F непротиворечивой. Таким образом, даже ограничив рассмотрение одним вполне определенным вопросом о завершении или незавершении работы машины Тьюринга (т. е. ложности или истинности П1-высказываний), мы не можем себе позволить не учитывать субъективности убеждений в отношении, скажем, существования некоторого обширного неконструктивно-бесконечного множества S. Если различные математики используют для установления истинности определенных П1 -высказываний неэквивалентные «персональные алгоритмы», то, по-видимому, с моей стороны несправедливо говорить о про-. сто «математиках» или «математическом сообществе».
Полагаю, что в строгом смысле это действительно может быть несколько несправедливо; и читатель может при желании перефразировать вывод следующим образом:
* Для установления математической истины ни один отдельно взятый математик не применяет только те алгоритмы, какие он (или она) полагает обоснованными. j
Представленные мною доводы по-прежнему остаются в силе, однако, мне кажется, некоторые из более поздних утратят значительную часть своей силы, если представить ситуацию в таком виде. Более того, в случае формулировки * все доказательство уходит в направлении, на мой взгляд, бесперспективном, сосредоточенном, в большей степени, на конкретных механизмах, управляющих действиями конкретных индивидуумов, нежели на принципах, лежащих в основе действий любого из нас. Меня же на данном этапе интересует не столько различия подходов отдельных математиков к той или иной математической проблеме, сколько то общее, что есть между нашим пониманием и нашим математическим восприятием.
Попытаемся разобраться, действительно ли мы вынуждены принять формулировку *. В самом ли деле суждения математиков настолько субъективны, что они могут принципиально расходиться при установлении истинности какого-то конкретного III-высказывания? (Разумеется, доказательство, устанавливающее истинность hi-высказывания, может быть просто-напросто быть слишком громоздким или слишком сложным, чтобы его мог воспроизвести тот или иной математик (см. ниже по тексту возражение Q12), т.е. на практике математики вполне могут разойтись во мнениях. Однако в данном случае нас интересует вовсе не это. Мы занимаемся исключительно принципиальными вопросами.) Вообще говоря, математическое доказательство есть вещь не настолько субъективная, как может показаться на основании вышесказанного. Математики могут придерживаться самых разных — и, на их взгляд, неопровержимо истинных — точек зрения по тем или иным фундаментальным вопросам и во всеуслышание объявлять об этом, однако едва дело доходит до доказательств или опровержений каких-либо вполне определенных конкретных hi-высказываний, все разногласия тут же куда-то исчезают. Никто не воспримет всерьез доказательство hi-высказывания, утверждающего, по сути своей, непротиворечивость некоторой формальной системы F, если математик будет основывать его только лишь на существовании некоего спорного бесконечного множества S. То, что при этом в действительности доказывается, можно сформулировать следующим, куда более приемлемым, образом: «Если множество S существует, то формальная система F является непротиворечивой, и в этом случае данное П1-высказывание истинно».
Тем не менее, могут быть и исключения: например, один математик полагает, что некоторое неконструктивно-бесконечное множество S «с очевидностью» существует — или, по крайней мере, что допущение о его существовании никоим образом не приводит к противоречию, — другой же математик никакой очевидности здесь не усматривает. Дискуссии математиков по таким фундаментальным вопросам могут порой принимать поистине неразрешимый характер. При этом обе стороны могут оказаться, в принципе, неспособны сколько-нибудь убедительно изложить свои доказательства, даже в отношении П1-высказываний. Возможно, каждому математику и в самом деле присуще некое особое внутреннее восприятие истинности утверждений, связанных с неконструктивно-бесконечными множествами. Конечно же, математики нередко заявляют о том, что их восприятие таких вещей в корне отличается от восприятия коллег. Однако я полагаю, что такие различия, по сути своей, подобны различиям в ожиданиях, которые различные математики могут иметь и в отношении истинности обычных математических высказываний. Эти ожидания суть всего лишь предварительные предположения. До тех пор, пока не представлено убедительного доказательства или опровержения, математики могут спорить друг с другом об ожидаемой или предполагаемой истинности того или иного положения, однако представление такого доказательства одним из математиков убеждает (в принципе) всех. Что до фундаментальных вопросов, то там этих доказательств как раз нет. Возможно, и не будет. Быть может, их нельзя отыскать по той причине, что их просто-напросто нет, а фундаментальные вопросы допускают существование различных, но равно справедливых точек зрения. Здесь, однако, следует подчеркнуть еще один связанный с hi-высказываниями момент. Возможность наличия у математика ошибочной точки зрения — т. е. такой точки зрения, которая вынуждает его делать неверные выводы в отношении истинности тех или иных П1-высказываний, — нас в данный момент не интересует. Нет ничего невероятного в том, что математики порой опираются на неверное в фактическом отношении «понимание» — а то и на необоснованные алгоритмы, — только к настоящему обсуждению это никакого отношения не имеет, поскольку согласуется с выводом У. Впрочем, эту ситуацию мы подробно рассмотрим ниже, в § 3.4. Следовательно, дело в данном случае заключается не в том, могут ли разные математики придерживаться противоречащих, одна другой точек зрения, а скорее в том, может ли одна точка зрения оказаться, в принципе, мощнее другой. Каждая такая точка зрения будет совершенно справедлива в том, что касается установления истинности П1-высказываний, однако какая-то из них сможет, в принципе, дать своим последователям возможность установить, что те или иные вычисления не завершаются, тогда как другие, более слабые, точки зрения на это неспособны; то есть одни математики будут обладать существенно большей способностью к пониманию, нежели другие.
Не думаю, что такая возможность представляет собой сколько-нибудь серьезную угрозу для моей первоначальной формулировки . Хотя в отношении бесконечных множеств математики и вправе придерживаться различных точек зрения, этих самых точек зрения вовсе не так много: по всей видимости, не более пяти. Существенные в этом смысле расхождения могут быть обусловлены лишь утверждениями, подобными аксиоме выбора (о ней говорилось в комментарии к возражению Q10), которую одни полагают «очевидной», другие же напрочь отвергают связанную с ней неконструктивность. Любопытно, что эти различные точки зрения на собственно аксиому выбора не приводят непосредственно к тому П1-высказыванию, относительно справедливости которого возникают разногласия. Ибо, независимо от своей предполагаемой «истинности» или «ложности», аксиома выбора, как показывает теорема Гёделя—Коэна(см. комментарий к Q10), не вступает в противоречие со стандартными аксиомами системы ZF. Могут, однако, существовать и другие спорные аксиомы, соответствующей теоремы для которых нет. Впрочем, обыкновенно, когда речь заходит о принятии или опровержении той или иной теоретико-множественной аксиомы — назовем ее аксиомой Q, — утверждения математиков принимают следующий вид: «Из допущения справедливости аксиомы Q следует, что ... ». Такое утверждение при всем желании не сможет стать предметом спора между математиками. Аксиома выбора, похоже, является исключением в том смысле, что ее справедливость часто подразумевается без приведения упомянутой оговорки, однако это обстоятельство, по-видимому, никак не противоречит моей общей объективной формулировке вывода — при условии, что мы ограничимся только П1-высказываниями:
Для установления истинности П1-высказываний математики-люди не применяют заведомо обоснованные алгоритмы, а этого нам в любом случае вполне достаточно.
Есть ли другие спорные аксиомы, которые одни математики считают «очевидными», а другие ставят под сомнение? Думаю, будет огромным преувеличением сказать, что имеется хотя бы десять существенно различных точек зрения на теоретико-множественные допущения, которые в явном виде как допущения не формулируются. Положим, что их не более десяти, и рассмотрим следствия из этого допущения. Это означает, что существует порядка десяти, по сути, различных классов математиков, различаемых по типу рассуждения в отношении бесконечных множеств, который они полагают «очевидно» истинным. Каждого такого математика можно назвать математиком n-го класса, где n изменяется в весьма узком диапазоне — не более десяти значений. (Чем больше номер класса, тем мощнее будет точка зрения принадлежащих к нему математиков.) Вывод ** принимает в этом случае следующий вид:
Для установления истинности ГЦ –высказываний математики-люди n-го класса (где n может принимать лишь несколько значений) не применяют только те алгоритмы, какие они полагают обоснованными.
Так получается, потому что доказательство Гёделя(— Тьюринга) можно применять к каждому классу отдельно. (Важно понять, что само гёделевское доказательство предметом спора между математиками не является, а потому если для любого математика nго класса гипотетический алгоритм n-го класса будет познаваемо обоснованным, то доказательство приведет к противоречию.) Таким образом, как и в случае с , дело вовсе не в существовании какого-то невообразимого количества непознаваемо обоснованных алгоритмов, каждый из которых присущ лишь одному конкретному индивидууму. Мы всего лишь исключаем возможность существования некоторого очень небольшого количества неэквивалентных непознаваемо обоснованных алгоритмов, рассортированных в соответствии с их мощностью и образующих в результате различные «школы мышления». В последующем обсуждении различия между вариантами и либо не будут иметь особого значения, поэтому для упрощения изложения я не стану в дальнейшем их как-то различать и буду использовать для них всех одно общее обозначение .
Q12. Вне зависимости оттого, насколько различных точек зрения придерживаются математики в принципе, на практике те же математики обладают весьма разными способностями к воспроизведению доказательств, разве не так? Не менее различны и их способности к пониманию, позволяющие им совершать математические открытия.
Безусловно, так оно и есть, однако к рассматриваемому вопросу все эти вещи не имеют ну абсолютно никакого отношения. Меня не интересует, какие именно и насколько сложные доказательства математик способен воспроизвести на практике. Еще меньше меня занимает вопрос о том, какие доказательства математик может на практике открыть или какие понимание и вдохновение могут ему в этом способствовать. Здесь мы говорим исключительно о том, доказательства какого типа математики могут, в принципе, воспринимать как обоснованные.
Оговорка «в принципе» используется в наших рассуждениях отнюдь не просто так. Если допустить, что некий математик располагает доказательством или опровержением некоторого III -высказывания, то его разногласия с другими математиками касательно обоснованности данного доказательства разрешимы только в том случае, если у этих самых других математиков хватит времени, терпения, объективности, способностей и решимости с вниманием и пониманием воспроизвести всю — возможно, длинную и хитроумную — цепочку его рассуждений. На практике же математики вполне могут отказаться от всех этих трудов еще до полного разрешения спорных вопросов. Однако подобные проблемы к данному исследованию отношения не имеют. Так как, по всей видимости, существует все же некий вполне определенный смысл, в котором то, что в принципе постижимо для одного математика, оказывается равным образом (если отвлечься на время от возражения Q11) постижимо и для другого, — вообще, для любого человека, способного мыслить. Рассуждения бывают весьма громоздкими, а участвующие в них концепции могут показаться чересчур тонкими или туманными, и тем не менее существуют достаточно убедительные основания полагать, что способность к пониманию одного человека не включает в себя ничего такого, что в принципе недоступно другому человеку. Это применимо и к тем случаям, когда для воспроизведения во всех подробностях чисто вычислительной части доказательства может потребоваться помощь компьютера. Возможно, не совсем разумно ожидать, что математик-человек будет лично выполнять все необходимые для такого доказательства вычисления, и все же он, вне всякого сомнения, сможет без особого труда понять и проверить каждый отдельный его этап.
Здесь я говорю исключительно о сложности математического доказательства и ни в коем случае не о возможных существенных и принципиальных вопросах, которые могут вызвать среди математиков разногласия в отношении выбора допустимых методов рассуждения. Разумеется, я встречал математиков, утверждавших, что они в своей практике сталкивались с такими математическими доказательствами, которые были совершенно вне их компетенции: «Я уверен, что, сколько бы я ни старался, мне никогда не понять того-то или такого-то; этот метод рассуждения мне не по зубам». В каждом конкретном случае подобного заявления необходимо индивидуально решать, действительно ли данный метод рассуждения в принципе выходит за рамки системы убеждений этого математика — каковой случай мы рассматривали в комментарии к возражению Q11, — или он вообще-то смог бы разобраться в принципах, на которых основано это доказательство, если бы только приложил больше сил и затратил больше времени. Как правило, справедливым оказывается последнее. Более того, источником отчаяния нашего математика чаще всего становится туманный стиль изложения или ограниченные лекторские способности «такого-то», а вовсе не то, что какие-то существенные и принципиальные моменты «того-то» действительно выходят за рамки его способностей. Толковое изложение, на первый взгляд, непонятного предмета чудесным образом устраняет все прежние недоразумения.