Файл: Пеноуз Роджер. Тени разума. В поисках науки о сознании.doc
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 29.06.2024
Просмотров: 743
Скачиваний: 0
СОДЕРЖАНИЕ
1.2. Спасут ли роботы этот безумный мир?
1.3. Вычисление и сознательное мышление
1.5. Вычисление: нисходящие и восходящие процедуры
1.6. Противоречит ли точка зрения в тезису Черча—Тьюринга?
1.9. Невычислительные процессы
1.11. Обладают ли компьютеры правами и несут ли ответственность?
1.12. «Осознание», «понимание», «сознание», «интеллект»
1.13. Доказательство Джона Серла
1.14. Некоторые проблемы вычислительной модели
1.15. Свидетельствуют ли ограниченные возможности сегодняшнего ии в пользу ?
1.16. Доказательство на основании теоремы Гёделя
1.17. Платонизм или мистицизм?
1.18. Почему именно математическое понимание?
1.19. Какое отношение имеет теорема Гёделя к «бытовым» действиям?
1.20. Мысленная визуализация и виртуальная реальность
1.21. Является ли невычислимым математическое воображение?
2.1. Теорема Гёделя и машины Тьюринга
2.3. Незавершающиеся вычисления
2.4. Как убедиться в невозможности завершить вычисление?
2.5. Семейства вычислений; следствие Гёделя — Тьюринга
2.6. Возможные формальные возражения против
2.7. Некоторые более глубокие математические соображения
2.8. Условие -непротиворечивости
2.9. Формальные системы и алгоритмическое доказательство
2.10. Возможные формальные возражения против (продолжение)
Приложение а: геделизирующая машина тьюринга в явном виде
3 О невычислимости в математическом мышлении
Читатели, которые знакомы с понятием канторовых трансфинитных ординалов, несомненно, узнают индексы, обычно используемые для обозначения таких чисел. Тем же, кто от подобных вещей далек, не стоит беспокоиться из-за незнания точного значения этих символов. Достаточно сказать, что описанную процедуру «гёделизации» можно продолжить и далее: мы получим формальные системы Fw<, F^s, ..., после чего придем к еще более обширной системе Fw«/, затем процесс продолжается до еще больших ординалов, например, шш" и т. д. — до тех пор, пока мы все еще способны на каждом последующем этапе понять, каким образом систематизировать все множество гёделизации, которые мы получили на данный момент. В этом и заключается основная проблема: для упомянутых нами «усилий, трудов и напряжений» требуется соответствующее понимание того, как должно систематизировать предыдущие гёделизации. Эта систематизация выполнима при условии, что достигаемый к каждому последующему моменту этап будет помечаться так называемым рекурсивным ординалом, что, в сущности, означает, что должен существовать определенный алгоритм, способный такую процедуру генерировать. Однако алгоритмической процедуры, которую можно было бы заложить заранее и которая позволила бы выполнить описанную систематизацию для всех рекурсивных ординалов раз и навсегда, просто-напросто не существует. Нам снова придется прибегать к пониманию.
Вышеприведенная процедура была впервые предложена Аланом Тьюрингом в его докторской диссертации (а опубликована в [367])'8); там же Тьюринг показал, что любое истинное Щ-высказывание можно, в некотором смысле, доказать с помощью многократной гёделизации, подобной описанной нами. (См. также [116].) Впрочем, воспользоваться этим для получения механической процедуры установления истинности ГЦ -высказываний нам не удастся по той простой причине, что механически систематизировать гёделизацию невозможно. Более того, невозможность «автоматизации» процедуры гёделизации как раз и выводится из результата Тьюринга. А в §2.5 мы уже показали, что общее установление истинности (либо ложности) ГЦ-высказываний невозможно произвести с помощью каких бы то ни было алгоритмических процедур. Так что, в поисках систематической процедуры, не доступной тем вычислительным соображениям, которые мы рассматривали до настоящего момента, многократная гёделизация нам ничем помочь не сможет. Таким образом, для вывода £f возражение Q19 угрозы не представляет.
••(;->Ж
Q20. Реальная ценность математического понимания состоит, безусловно, не в том, что благодаря ему мы способны выполнять невычислимые действия, а в том, что оно позволяет нам заменить невероятно сложные вычисления сравнительно простым пониманием? Иными словами, разве не правда, что, используя разум, мы, скорее, «срезаем углы» в смысле теории сложности, а вовсе не «выскакиваем» за пределы вычислимого?
Я вполне готов поверить в то, что на практике интуиция математика гораздо чаще используется для «обхода» вычислительной сложности, чем невычислимости. Как-никак математики по природе своей склонны к лени, а потому зачастую стараются изыскать всяческие способы избежать вычислений (пусть даже им придется в итоге выполнить значительно более сложную мыслительную работу, нежели потребовало бы собственно вычисление). Часто случается так, что попытки заставить компьютеры бездумно штамповать теоремы даже умеренно сложных формальных систем быстро загоняют эти самые компьютеры в ловушку фактически безнадежной вычислительной сложности, тогда как математик-человек, вооруженный пониманием смысла, лежащего в основе правил такой системы, без особого труда получит в рамках этой системы множество интересных результатов(9).
Причина того, что в своих доказательствах я рассматривал не сложность, а невычислимость, заключается в том, что только с помощью последней мне удалось сформулировать необходимые для доказательства сильные утверждения. Не исключено, что в работе большинства математиков вопросы невычислимости играют весьма незначительную роль, если вообще играют. Однако суть не в этом. Я глубоко убежден, что понимание (в частности, математическое) представляет собой нечто, недоступное вычислению, а одной из немногих возможностей вообще подступиться ко всем этим вопросам является как раз доказательство Гёделя (—Тьюринга). Никто не отрицает, что наши математические интуиция и понимание нередко используются для получения результатов, достижимых, в принципе, и вычислительным путем, — но и здесь слепое, не отягощенное пониманием, вычисление может оказаться неэффективным настолько, что попросту не будет работать (см. §3.26). Однако рассмотрение всех таких случаев представляется мне неизмеримо более сложным подходом, нежели обращение к общей невычислимости.
Как бы то ни было, высказанные в возражении Q20 соображения, пусть и справедливые, все же ни в коей мере не противоречат выводу Sf.
Примечания
Кому-то, возможно, покажется, что это совершенно «очевидно» и уж никак не может служить предметом спора среди математиков! Проблема, однако, существует, и возникает она в связи с понятием «существования» применительно к большим бесконечным множествам. (См., например, [349], [328], [265].) На примере парадокса Рассела мы уже убедились, что в таких вопросах необходимо проявлять особую осторожность. Согласно одной точке зрения, множество не считается необходимо существующим, если нет четкого правила (не обязательно вычислимого), устанавливающего, какие элементы в это множество следует включать, а какие — нет. Как раз этого правила аксиома выбора нам и не предоставляет, поскольку в ней нет правила, определяющего, какой элемент следует взять из каждого множества совокупности. (Некоторые из следствий аксиомы выбора интуитивно не понятны и почти парадоксальны. Вероятно, в этом и состоит одна из причин возникновения разногласий по данному вопросу. Более того, я не совсем уверен, какой позиции придерживаюсь в этом отношении я сам!)
В заключительной главе своей книги, написанной в 1966 году, Коэн подчеркивает, что, хотя он и показал, что континуум-гипотеза является НЕРАЗРЕШИМОЙ в рамках процедур системы ZF, вопрос о том, является ли она действительно истинной, был оставлен им без внимания, — и выдвигает некоторые предположения относительно того, каким образом этот вопрос можно действительно решить\ То есть Коэн, со всей очевидностью, не считает, что выбор между принятием или непринятием континуум-гипотезы есть предмет абсолютно произвольный. Это расходится с нередко высказываемым относительно следствий из результатов Гёделя—Коэна мнением, суть которого сводится к тому, что существуют многочисленные «альтернативные теории множеств», для математики в равной степени «справедливые». Такие замечания свидетельствуют о том, что Коэн, подобно Гёделю, является подлинным платонистом, для которого вопросы математической истины ни в коем случае не произвольны, но абсолютны. Очень похожих взглядов придерживаюсь и я, см. §8.7.
См., например, [201], [37].
См., например, различные комментарии, приведенные в Behavioral and Brain Sciences, 13 (1990), 643-705.
Терминология была предложена Хофштадтером в [201]. Согласно «другой» теореме Гёделя — так называемой теореме о полноте, — подобные нестандартные модели существуют всегда.
Вообще говоря, это зависит от того, какие именно утверждения считать частью так называемой «евклидовой геометрии». Если пользоваться обычной терминологией логиков, то система «евклидовой геометрии» включает только утверждения некоторого частного вида, причем оказывается, что истинность или ложность этих утверждений можно определить с помощью алгоритмической процедуры, отсюда и утверждение, что евклидову геометрию можно описать с помощью формальной системы. Однако в других интерпретациях обычная «арифметика» тоже могла бы считаться частью «евклидовой геометрии», что допустило бы классы утверждений, которые невозможно разрешить алгоритмическим путем. То же самое произошло бы, если бы мы рассмотрели задачу о замощении плоскости полиомино как составляющую евклидовой геометрии, что, казалось бы, вполне естественно. В этом смысле описать геометрию Евклида формально ничуть не проще, чем арифметику!
См. комментарий М.Дэвиса в [73].
См. также [230], [231] и [162].
О некоторых проблемах, с которыми сталкивались компьютерные системы, пытавшиеся самостоятельно «делать математику», можно прочесть у Д. Фридмана [123]. Отметим, что в общем случае такие системы не слишком преуспели. Они по-прежнему остро нуждаются в помощи человека.