Файл: Пеноуз Роджер. Тени разума. В поисках науки о сознании.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 29.06.2024

Просмотров: 751

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Роджер пенроуз

1.2. Спасут ли роботы этот безумный мир?

1.3. Вычисление и сознательное мышление

1.4. Физикализм и ментализм

1.5. Вычисление: нисходящие и восходящие процедуры

1.6. Противоречит ли точка зрения в тезису Черча—Тьюринга?

1.7. Хаос

1.8. Аналоговые вычисления

1.9. Невычислительные процессы

1.10. Завтрашний день

1.11. Обладают ли компьютеры правами и несут ли ответственность?

1.12. «Осознание», «понимание», «сознание», «интеллект»

1.13. Доказательство Джона Серла

1.14. Некоторые проблемы вычислительной модели

1.15. Свидетельствуют ли ограниченные возможности сегодняшнего ии в пользу ?

1.16. Доказательство на основании теоремы Гёделя

1.17. Платонизм или мистицизм?

1.18. Почему именно математическое понимание?

1.19. Какое отношение имеет теорема Гёделя к «бытовым» действиям?

1.20. Мысленная визуализация и виртуальная реальность

1.21. Является ли невычислимым математическое воображение?

Примечания

2 Геделевское доказательство

2.1. Теорема Гёделя и машины Тьюринга

2.2. Вычисления

2.3. Незавершающиеся вычисления

2.4. Как убедиться в невозможности завершить вычисление?

2.5. Семейства вычислений; следствие Гёделя — Тьюринга

2.6. Возможные формальные возражения против

2.7. Некоторые более глубокие математические соображения

2.8. Условие -непротиворечивости

2.9. Формальные системы и алгоритмическое доказательство

2.10. Возможные формальные возражения против (продолжение)

Примечания

Приложение а: геделизирующая машина тьюринга в явном виде

3 О невычислимости в математическом мышлении

3.1. Гёдель и Тьюринг

О психофизи(ологи)ческой проблеме

Р.Пенроуз. Тени ума: в поисках потерянной науки о сознании. Penrose r. Shadows of the mind: a search for the missing science of consciousness. - Oxford, 1994. - XVI, 457 p.

Представление некоторых формальных систем включает в себя бесконеч­ное количество аксиом (они описываются через посредство структур, называе­мых «схемами аксиом»), однако, чтобы оставаться «формальной» в том смысле, какой вкладываю в это понятие я, система должна быть выразима в каком-то конечном виде — например, упомянутая система с бесконечным количеством аксиом должна порождаться конечным набором вычислительных правил. Это вполне возможно, и именно так и обстоит дело со стандартными формальными системами, которые применяются в математических доказательствах, — одной из таких систем является, например, знаменитая «формальная система Цермело— Френкеля» ZF, описывающая традиционную теорию множеств.

Пояснение к используемым здесь обозначениям можно найти в §2.8. Впро­чем, G (F) без ущерба для смысла рассуждения можно было бы везде заменить на Г2 (F), в чем мы убедимся ниже.

Источник цитаты мне, к сожалению, обнаружить не удалось. Однако, как справедливо заметил Рихард Йожа, точная формулировка слов Фейнмана не имеет никакого значения, поскольку послание, которое они несут, применимо и к ним самим!

Как и ранее, обозначение G (F) можно без каких бы то ни было последствий заменить на П (F). То же справедливо и для комментариев к Q15Q20.

Это означает, что при кодировании машины Тьюринга каждую последова­тельность ...110011… можно заменить на ...11011…В специ­фикации универсальной машины Тьюринга, описанной в НРК (см. примечание 7 после главы 2), имеется пятнадцать мест, где я этого не сделал. Решительно досадная оплошность с моей стороны, и это после того я приложил столько усилий для того, чтобы добиться (в рамках моих же собственных правил) по возможности наименьшего номера, определяющего эту универсальную машину. Упомянутая простая замена позволяет уменьшить мой номер более чем в 30000 раз! Я благодарен Стивену Ганхаусу за то, что он указал мне на этот недосмотр, а также за то, что он самостоятельно проверил всю представленную в НРК спе­цификацию и подтвердил, что она действительно определяет универсальную машину Тьюринга.

Более того, сам Тьюринг первоначально предполагал вообще останавли­вать машину всякий раз, когда она повторно переходит во внутреннее состо­яние «О» из любого другого состояния. В этом случае нам не только не пона­добилось бы вышеупомянутое ограничение, мы спокойно могли бы обойтись и без команды STOP. Тем самым мы достигли бы существенного упрощения, поскольку последовательность 11110 в качестве команды нам была бы уже не нужна, и ее можно было бы использовать как разделитель, что позволило бы избавиться от последовательности 111110. Это значительно сократило бы длину предписания K, и кроме того, вместо пятеричной системы счисления мы бы обошлись четверичной.


3.1. Гёдель и Тьюринг

В главе 2 была предпринята попытка продемонстрировать мощь и строгий характер аргументации в пользу утверждения (обозначенного буквой), суть которого заключается в том, что математическое понимание не может являться результатом при­менения какого-либо осмысленно осознаваемого и полностью достоверного алгоритма (или, что то же самое, алгоритмов; см. возражение Q1). В приводимых рассуждениях, однако, ни словом не упомянуто еще об одной возможности, существенно более се­рьезной и ничуть не противоречащей утверждению, а имен­но: убежденность математика в истинности своих выводов может оказаться результатом применения им некоего неизвестного и неосознаваемого алгоритма, или же, возможно, математик при­меняет какой-то вполне постижимый алгоритм, однако при этом не может знать наверняка (или хотя бы искренне верить), что вы­воды его являются целиком и полностью результатом применения этого самого алгоритма. Ниже я покажу, что, хотя подобные до­пущения и вполне приемлемы с логической точки зрения, вряд ли их можно счесть хоть сколько-нибудь правдоподобными.

Прежде всего следует указать на то, что тщательно вы­страивая последовательности умозаключений (вполне, заметим, осознанных) с целью установления той или иной математиче­ской истины, математики вовсе не считают, что они лишь слепо следуют неким неосознаваемым правилам, будучи при этом не в состоянии постичь эти правила ни рассудком, ни верой. На­против, они твердо знают, что их аргументация опирается ис­ключительно на непреложные истины — в основе своей, суще­ственно «очевидные»; столь же непреложными, на их взгляд, являются и все промежуточные умозаключения, составляющие упомянутую последовательность. Какой бы длинной, запутанной или даже концептуально неочевидной ни была цепь умозаклю­чений, само рассуждение в основе своей остается принципиаль­но неопровержимым и логически безупречным, а автор его ис­кренне верит в свою правоту. Ни один математик не согласит­ся с предположением о том, что на самом-то деле все его дей­ствия определяются какими-то совершенно иными процедурами, о которых он ничего не знает и в которые не верит, но кото­рые, возможно, неким непостижимым образом исподволь влияют на его убеждения.

Разумеется, в этом отношении математики могут и ошибать­ся. Может быть, и впрямь существует какая-то алгоритмическая процедура, которая руководит всем математическим мышлением, оставаясь при этом неизвестной самим математикам. Всерьез принять такую возможность, пожалуй, легче людям, далеким от математики, нежели большинству из тех, для кого математика является профессией. Полагая, что деятельность математика не сводится к простому выполнению некоего неизвестного (и непо­стижимого) алгоритма (равно как и алгоритма, в существовании которого он испытывает сомнения), это самое большинство ока­зывается как нельзя более правым, в чем я и постараюсь убедить читателя в этой главе. Разумеется, полностью исключить воз­можность того, что суждения и убеждения математиков и в самом деле определяются какими-то неизвестными и неосознаваемыми факторами, нельзя; однако, даже если так оно и есть, я полагаю, что такие факторы не имеют ничего общего с алгоритмически описываемыми процедурами.


Весьма поучительным представляется рассмотреть точки зрения двух выдающихся мыслителей от математики, которым мы, собственно говоря, и обязаны идеями, приведшими нас к утверждению . Что, в самом деле, думал по этому поводу Гёдель? А Тьюринг? Примечательно, что, исходя из одинако­вых математических данных, они пришли к противоположным, в сущности, выводам. Следует, впрочем, пояснить, что оба вы­вода находятся в полном согласии с утверждением. Гёдель, по всей видимости, полагал, что разум, вообще говоря, не ограни­чен не только необходимостью выступать исключительно в ка­честве вычислительной сущности, но и конечными физическими параметрами самого мозга. Он даже упрекал Тьюринга за то, что тот не допускал такой возможности. По словам Хао Вана ([374], с. 326, см. также Собрание сочинений Гёделя, т. 2 [158], с. 297), соглашаясь с обоими, вытекающими из позиции Тьюрин­га положениями, т. е. с тем, что «мозг, в сущности, функциони­рует подобно цифровому компьютеру», и с тем, что «физические законы, равно как и наблюдаемые следствия из них, обладают конечным пределом точности», Гёдель напрочь отвергал утвер­ждение Тьюринга о неотделимости разума от материи, считая это «свойственным эпохе предрассудком». Таким образом, согласно Гёделю, сам по себе физический мозг действует исключительно как вычислитель, разум же по отношению к мозгу представляет собой нечто высшее, вследствие чего активность разума оказы­вается свободной от ограничений, налагаемых вычислительны­ми законами, управляющими поведением мозга как физического объекта. Гёдель, судя по его собственным словам), не считал, что утверждениеможно рассматривать в качестве доказа­тельства его тезиса о невычислимости деятельности разума:

«С другой стороны, учитывая доказанное ранее, следует допустить принципиальную возможность существова­ния (и даже эмпирической реализации) некоей машины для доказательства теорем, каковая машина в сущности представляет собой эквивалент математической интуи­ции, однако доказать эту эквивалентность невозмож­но, как невозможно доказать и то, что на выходе такой машины мы будем получать только корректные теоре­мы конечной теории чисел».

Надо сказать, что вышеприведенное допущение ни в коей ме­ре не противоречит(и я ничуть не сомневаюсь, что Гёделю был хорошо известен тот недвусмысленный вывод, какой в моей формулировке получил обозначение). Гёдель допускал логи­ческую возможность того, что разум математика может функ­ционировать в соответствии с некоторым алгоритмом, о котором сам математик не знает, либо знает, но в таком случае не может быть однозначно уверен в его обоснованности (... доказать ... невозможно, ... только корректные теоремы ...). В соответствии с моей собственной терминологией такой алгоритм следует отнести к категории «непознаваемо обоснованных». Разумеется, совсем иное дело действительно поверить в возможность того, что деятельность разума математика и в самом деле определяется таким вот непознаваемо обоснованным алгоритмом. Похоже, сам Гёдель в это так и не поверил — и оказался в результате окружен компанией мистиков (точка зрения ), которые полагают, что средствами науки о феноменах физического мира разум объяс­нить невозможно.


Что же касается Тьюринга, то он, по-видимому, мистиче­скую точку зрения не принял, будучи в то же время солидарен с Гёделем в том, что мозг, как и всякий другой физический объ­ект, должен функционировать каким-либо вычислимым образом (вспомним о «тезисе Тьюринга», § 1.6). Таким образом, Тьюрингу пришлось искать какой-то другой способ обойти затруднение в лице утверждения. При этом особенно значимым ему показал­ся тот факт, что математикам-людям свойственно делать ошибки; если мы хотим, чтобы наш компьютер стал подлинно разумным, следует позволить ему хоть иногда ошибаться:

«Иными словами, это означает, что если мы требуем от машины непогрешимости, то не стоит ожидать от нее еще и разумности. Существует несколько теорем, суть которых почти буквально сводится к вышеприве­денному утверждению. Однако в этих теоремах ничего не говорится о степени разумности, которую нам мо­жет продемонстрировать машина, не претендующая на непогрешимость».

Под «теоремами» Тьюринг, вне всякого сомнения, подразумева­ет теорему Гёделя и другие аналогичные теоремы — такие, на­пример, как его собственная, «вычислительная» версия теоремы Гёделя. То есть, по Тьюрингу, получается, что наиболее суще­ственной способностью человеческого математического мышле­ния является способность ошибаться, благодаря которой свой­ственное (предположительно) разуму неточно-алгоритмическое функционирование обеспечивает большую мощность, нежели возможно получить посредством каких угодно полностью об­основанных алгоритмических процедур. Исходя из этого до­пущения, Тьюринг предложил способ обойти ограничение, на­лагаемое следствиями из теоремы Гёделя: мыслительная деятельность математика подчиняется-таки некоему алгорит­му, только не «непознаваемо обоснованному», а формаль­но необоснованному. Таким образом, точка зрения Тьюрин­га приходит в полное согласие с утверждением , а сам Тьюринг, по-видимому, присоединяется к сторонникам точ­ки зрения,.

Завершая дискуссию, я хотел бы представить мои собствен­ные причины усомниться в том, что «необоснованность» управ­ляющего разумом математика алгоритма может послужить под­линным объяснением тому, что в этом самом разуме проис­ходит. Как бы ни обстояло дело в действительности, в самой идее о том, что превосходство человеческого разума над точной машиной достигается за счет неточности разума, мне видит­ся какое-то глубинное противоречие, особенно когда речь — как в нашем случае — идет о способности математика от­крывать неопровержимые математические истины, а не о его оригинальности или творческих способностях. Порази­тельно, что два великих мыслителя, какими, несомненно, явля­ются Гёдель и Тьюринг, руководствуясь соображениями вроде утверждения, пришли к выводам (пусть и различным), кото­рые многие из нас склонны считать, скажем так, маловероятны­ми. Кроме того, весьма интересно поразмыслить о том, к каким бы выводам они пришли, имей они шанс хоть сколько-нибудь всерьез предположить, что физический процесс может иногда оказаться в основе своей невычислимым — в соответствии с точкой зрения, ради продвижения которой и была написана эта книга.


В последующих разделах (особенно, в §§3.2—3.22) я пред­ставлю вашему вниманию несколько детальных обоснований (некоторые из них довольно сложны, запутаны или специальны), целью которых является демонстрация неспособности вычисли­тельных моделейвыступить в качестве вероятной основы для исследования феномена математического понимания. Если читатель не нуждается в подобном убеждении либо не склонен погружаться в детали, то я бы порекомендовал ему (или ей) все же начать чтение, а затем, когда уж совсем надоест, переходить сразу к итоговому воображаемому диалогу (§3.23). Если у вас затем снова появится желание вернуться к пропущенным рассу­ждениям, буду только рад, если же нет — забудьте о них и читайте дальше.

3.2. Способен ли необоснованный алгоритм познаваемым образом моделировать математическое понимание?

Согласно выводудля того чтобы математическое пони­мание могло оказаться результатом выполнения некоего алго­ритма, этот алгоритм должен быть необоснованным или непо­знаваемым, если же он сам по себе обоснован и познаваем, то о его обоснованности должно быть принципиально невозможно узнать наверняка (такой алгоритм мы называем непознаваемо обоснованным); кроме того, возможно, что различные математи­ки «работают» на различных типах таких алгоритмов. Под «алго­ритмом» здесь понимается просто какая-нибудь вычислительная процедурат. е. любой набор операций, который можно, в принципе, смоделировать на универсальном компьютере с неограниченным объемом памяти. (Как нам известно из обсу­ждения возражения«неограниченность» объема памя­ти в данном идеализированном случае на результаты рассужде­ния никак не влияет.) Такое понятие алгоритма включает в себя нисходящие процедуры, восходящие самообучающиеся системы, а также различные их сочетания. Сюда, например, входят любые процедуры, которые можно реализовать с помощью искусствен­ных нейронных сетейЭтому определению отвечают и иные типы восходящих механизмов — например, так называемые «генетические алгоритмы», повышающие свою эффективность с помощью некоей встроенной процедуры, аналогичной дарвинов­ской эволюции

О специфике приложения аргументации, представляемой в настоящем разделе (равно как и доводов, выдвинутых в гла­ве 2), к восходящим процедурам я еще буду говорить в 3.22 (краткое изложение их можно найти в воображаемом диа­логе,). Пока же, для большей ясности изложения, будем рассуждать, исходя из допущения, что в процессе участвует один-единственный тип алгоритмических процедур, а именно — нис­ходящие. Такую алгоритмическую процедуру можно относить как к отдельному математику, так и к математическому сообществу в целом. В комментариях к возражениями рассматривалось предположение о том, что разным людям могут быть свойственны различные обоснованные и известные алго­ритмы, причем мы пришли к заключению, что такая возможность не влияет на результаты рассуждения сколько-нибудь значитель­ным образом. Возможно также, что разные люди постигают ис­тину посредством различных необоснованных и непознавае­мых алгоритмов; к этому вопросу мы вернемся несколько поз­же (см. §3.7). А пока, повторюсь, будем считать, что в основе математического понимания лежит одна-единственная алгорит­мическая процедура. Можно, кроме того, ограничить рассматри­ваемую область той частью математического понимания, которая отвечает за доказательство-высказываний (т. е. определений тех операций машины Тьюринга, которые не завершаются; см. комментарий к возражению Q10). В дальнейшем вполне доста­точно интерпретировать сочетание «математическое понимание» как раз в таком, ограниченном смысле (см. формулировку с. 164).