ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 30.06.2024

Просмотров: 698

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Структура та зміст методичних матеріалів

І. Вступ

Іі. Тематичний план дисципліни

Ііі. Зміст навчальної дисципліни

Тема 1. Категорійно-понятійний апарат з безпеки життєдіяльності.

Тема 2. Природні небезпеки та характер їхніх проявів. Дії природних небезпек на людей, тварин, рослини, об’єкти економіки.

Тема 3. Техногенні небезпеки та їх реалізації.

Тема 4. Соціально-політичні небезпеки. Соціальні та психологічні фактори ризику. Поведінкові реакції населення у надзвичайних ситуаціях соціально-політичного характеру.

Тема 5. Застосування ризик орієнтованого підходу для побудови імовірнісних структурно-логічних моделей виникнення та розвитку надзвичайних ситуацій.

Тема 6. Менеджмент безпеки, правове забезпечення та організаційно-функціональна структура захисту населення та адміністративно-територіального округу у надзвичайній ситуації.

Іv. Плани семінарських (практичних) занять Заняття № 1 Теми 1 - 3. Семінар-прес-конференція на тему:

Заняття № 2

Тема 2. Практичне заняття на тему:

Заняття № 3

Тема 2, 3. Практичне заняття на тему:

Заняття № 4

Тема 3. Практичне заняття на тему:

Заняття № 5

Тема 3. Практичне заняття 4 на тему:

Заняття № 6

Тема 4. Семінар – круглий стіл на тему:

Заняття № 7

Тема 5. Практичне заняття на тему:

Заняття № 8

Тема 6. Семінар-прес-конференція на тему:

V. Приклади типових індивідуальних завдань та порядок їх розвязання завдання 1

Доповідь керівнику підприємства „Купон” щодо обстановки у підрозділах, які розташовані в районі населених пунктів Бельци, Сади та Дачі

Завдання 2

Виявлення та оцінка інженерної обстановки при зруйнуванні пожежа та вибухонебезпечних об'єктів

Іі. Виявлення та оцінка пожежа вибухонебезпечної обстановки на об’єкті господарювання.

Завдання 3

Завдання 4

VI.Карта самостійної роботи студента

Для студентів всіх напрямів підготовки та спеціалізацій

Карта самостійної роботи студента

Для студентів всіх напрямів підготовки та спеціалізацій

VII. Порядок поточного й підсумкового оцінювання знань студентів з дисципліни

7.1.Загальні положення щодо організації самостійної роботи студентів, поточного та підсумкового оцінювання їхніх знань з дисципліни

7.2.Оцінювання результатів поточного контролю. Об’єкти поточного контролю

7.3.Оцінювання активності роботи студента протягом семестру

Регламент поточного оцінювання знань студентів денної форми навчання під час вивчення навчального матеріалу дисципліни «Безпека життєдіяльності»

VIII. Особливості поточного контролю знань студентів заочної форми навчання

IX. Зразок білету модульної контрольної роботи

Модульний контроль

Завдання 1, варіант 1.1.

X. Список рекомендованої література

Руйнування ядерного реактора на АЕС призводить до виникнення двох основних факторів ураження:

радіоактивної хмари, що формується при миттєвому викиді радіоактивних речовин (РР) та наступному їх витіканні у продовж тривалого часу;

тривалого радіоактивного зараження місцевості.

У зв‘язку з цим, доза опромінювання рецептора буде складатися із доз зовнішнього опромінювання від хмари РР та зараженої РР місцевості, а також дози, що формується РР, які потрапили у нутро організму.

Умовно, забруднену радіоактивними речовинами територію та об’єкти, які на ній знаходяться, поділяють на п’ять зон (додаток 2.3.2, табл. 1 додаток 2.3.4): зону радіоактивної небезпеки (позначається буквою «М»), зону помірного радіоактивного забруднення (позначається буквою «А»), зону сильного радіоактивного забруднення (позначається буквою «Б»), зону небезпечного радіоактивного забруднення (позначається буквою «В») і зону надзвичайно небезпечного радіоактивного забруднення (позначається буквою «Г»).

Визначення впливу наслідків аварії (зруйнування) на ядерному реакторі з викидом у навколишнє середовище радіоактивних речовин на життєдіяльність персоналу і населення, вибору та обґрунтування оптимальних режимів їх перебування на зараженій радіоактивними речовинами території, виконання заходів запобігання дії факторів ураження та планування захисту реалізується через виявлення та оцінку радіаційної обстановки.

Виявлення радіаційної обстановки здійснюється шляхом прогнозу та за даними радіаційної розвідки і заключається у визначенні параметрів зон радіоактивного зараження та нанесенні їх на схему (карту) місцевості.

Радіаційна розвідка проводиться спеціальними дозорами на транспортних засобах або пішим порядком та потребує певного часу. Наприклад, для радіаційної розвідки аеропорту дозору РХБ розвідки на автомобілі потрібно понад 60 хв. Тому при оперативній необхідності виявлення радіаційної обстановки здійснюється шляхом прогнозування.

Зони зараження наносяться на карти та схеми у вигляді еліпсів для найбільш імовірного напрямку вітру. При нестійкому вітрі вони можуть мати вигляд кола.Наземна радіаційна обстановка характеризується такими елементами як масштаб, ступінь, характер та початок зараження, ступінь небезпеки для людей зараженої території.

Прогнозування елементів радіаційної обстановки частіше всього здійснюється детермінованим методом з використанням графічно розрахункового способу нанесення зон зараження на карти та схеми.


Після виявлення радіаційної обстановки здійснюється її оцінка. Вона включає:

  • аналіз впливу радіаційної обстановки на життєдіяльність персоналу та населення;

  • визначення раціональних способів дії людей в зонах радіоактивного зараження;

  • пошук раціональних заходів їх захисту від впливу іонізуючого випромінювання.

Розглянемо зміст методики прогнозування наземної радіаційної обстановки на об‘єкті господарювання в межах зон радіоактивного зараження.

Вихідні дані:

1. Інформація про АЕС:

  • тип ядерного енергетичного реактору (РБМК, ВВЕР);

  • електрична потужність ядерного енергетичного реактору – W, МВт;

  • кількість аварійних ядерних енергетичних реакторів – n;

  • координати ядерного енергетичного реактору чи АЕС – Х АЕС, Y АЕС (початок прямокутної системи координат суміщений з центром АЕС, а вісь ОХ вибирається вздовж напряму вітру);

  • астрономічний час аварії – Т ав, год.;

  • частка викинутих з ядерного енергетичного реактору радіоактивних речовин − , %.

2. Метеорологічна ситуація:

  • швидкість вітру на висоті 10 м − u10, м/с;

  • напрям вітру на висоті 10 м − 10, град.;

  • ступінь криву небозводу хмарами – відсутній, середній чи суцільний.

3. Додаткова інформація:

  • заданий час, на який визначається поверхнева активність, − ТЗ, год..;

  • координати об‘єкту – X, Y;

  • час початку опромінювання – tпоч год.;

  • тривалість опромінювання – Tоп год.;

  • захищеність людей, яка характеризується коефіцієнтом послаблення рівня радіації захисною спорудою чи об’єктом – Косл.

І. Визначення поверхневої активності (щільності) радіоактивного зараження місцевості на сліді хмари − Аs (Кu/м2).

Порядок виконання завдання:

  1. відповідно метеорологічній ситуації і заданому часу доби визначається категорія вертикальної стійкості атмосфери (табл. 2 додаток 2.3.4);

  2. у шарі атмосфери, де поширюється радіоактивна хмара, за допомогою табл. 3 (додаток 2.3.4) оцінюється середня швидкість вітру;

  3. на карту (схему) спеціальною позначкою наноситься АЕС;

  4. на карті (схемі) з центру АЕС в напряму вітру чорним кольором наноситься вісь сліду, зони якого прогнозуються;

  5. по карті (схемі) вздовж вісі сліду визначають відстань (Х) від АЕС до заданого об‘єкту і її зміщення від осі по координаті Y (вектор Y перпендикулярний осі Х );

  6. за допомогою табл. 5 – 6 (додаток 2.3.4) для відповідного типу ЯЕР і відстані Х визначається потужність дози опромінення на вісі сліду (РX.1) через 1 годину після аварії;

  7. за допомогою табл. 7 – 9 (додаток 2.3.4) визначається коефіцієнт (Ку), який враховує зміни потужності дози у перпендикулярному перетині сліду (за координатою Y);

  8. розраховується приведене значення заданого часу – tз (час, що пройшов після аварії) по формулі:


tз=TзTав;

  1. за допомогою табл. 10 (додаток 2.3.4) визначається час початку формування в районі об’єкту сліду радіоактивної хмари, що пройшов після аварії (t);

  2. зрівнюється заданий час tз і час початку формування в районі об’єкту сліду радіоактивної хмари t:

якщо tз t, то заданий час Тз настав до початку формування сліду радіоактивної хмари в районі об’єкту і Аs = 0;

при tз  t, за допомогою табл. 11 – 12 (додаток 2.3.4) визначається величина коефіцієнту (Кt), який враховує спад потужності дози випромінювання у часі;

  1. розраховуються значення коефіцієнту (Кw), що враховує електричну потужність АЕС (W) і частку радіоактивних речовин (), викинутих з ядерного енергетичного реактору в результаті аварії:

Kw = 10–4·n·W·;

  1. за допомогою табл. 13 (додаток 2.3.4) для заданого часу tз визначається значення коефіцієнту (Кзагр);

  2. розраховується поверхнева активність місцевості (щільність зараження) Аs, Кu/м2:

As= РX.1·Ky·Kt·Kw·Kзагр.

ІІ. Визначення довжини та ширини зон радіоактивного зараження.

Порядок виконання завдання:

  1. на карті (схемі) спеціальною позначкою показується місце розташування аварійної АЕС і, відповідно із заданим напрямом вітру, чорним кольором проводиться вісь сліду радіоактивної хмари;

2) вздовж осі сліду як на більшій вісі еліпсів будуються зони радіоактивного зараження (див. додаток 2.3.1): зону М – червоним; А – синім; Б – зеленим; В – коричневим, Г − чорним кольорами). Параметри зон (еліпсів) як функції типу ядерного енергетичного реактору, його потужності W, , ступеня вертикальної стійкості атмосфери, швидкості вітру на висоті 10 м, знаходять у табл. 4 (додаток 2.3.4).

ІІІ. Визначення дози опромінення рецептора (рецептор – це об’єкт живої чи неживої природи, що знаходиться в зоні дії іонізуючих випромінювань):

1) дозу опромінювання, що отримує населення чи персонал на відкритій місцевості визначається за допомогою формули:


,

де Рк, tк та Рп, tп – потужності дози та час, на який вони визначалися, що пройшов після викиду радіоактивних речовин із зруйнованого реактору, відповідно закінчення та початку опромінювання;

2) за допомогою табл. 11 – 12 (додаток 2.3.4) для заданого значення tп знаходять Кt, який множать на Ру1, отримуючи Рn:

Рп = Ру1 Кt ;

3) за допомогою табл. 11 – 12 (додаток 2.3.4) для заданого значення tк знаходять Кt та множать його на Ру1, отримуючи Рк:

Рк = Ру1. Кt.

4) визначив значення Рп та Рк, розраховується доза опромінювання без урахування захищеності рецептора (тобто дозу, яку отримав би рецептор, якщо опромінювався на відкритій місцевості) за допомогою формули:

.

5) якщо рецептор захищений від дії іонізуючого випромінювання, то здійснюється процедура корегування дози з урахуванням коефіцієнту ослаблення захисної споруди (об’єкту) − Косл, для цього:

Dкорег. = D/Косл.

Приклад прогнозування радіаційної обстановки на об’єкті.

Вихідні дані:

1. Інформація про АЕС:

тип ядерного енергетичного реактору (ЯЕР) − ВВЕР;

електрична потужність ЯЕР – W = 1 000, МВт;

кількість аварійних ЯЕР – n = 1;

координати ЯЕР – ХАЕС = 0 км, YАЕС = 0 км (початок прямокутної системи координат суміщений з центром АЕС, а вісь ОХ вибирається в напрямку вітру);

астрономічний час аварії – Тав = 12.00 год.;

частка викинутих з ЯЕР радіоактивних речовин – = 50 %.

2. Метеорологічні умови:

швидкість вітру на висоті 10 м – u10 = 5 м/с;

напрям вітру на висоті 10 м – 10, град = 0;

стан хмарного криву небозводу – напівпохмуро, тобто 5 балів.

3. Додаткова інформація:

час, на який визначається поверхнева активність − ТЗ = 17.00 год..;


координати об‘єкту – X = 20 км, Y = 2 км;

час початку опромінювання – tпоч = 17.00 год.;

тривалість опромінювання – Tоп = 4 год.;

захищеність людей – Косл = 2.

Порядок прогнозування.

І. Визначення поверхневої активності (Аs) в заданій точці на сліді хмари, Кu/м2:

  1. відповідно до погодних умов і заданому часу доби за допомогою табл. 2 (додаток 2.3.4) визначається категорія вертикальної стійкості атмосфери: категорія стійкості – D;

  2. за допомогою табл. 3 (додаток 2.3.4) оцінюється середня швидкість поширення радіоактивної хмари: швидкість поширення – 5 м/с;

  3. на схему (карту) місцевості спеціальною позначкою наносять АЕС з аварійним ядерним енергетичним реактором і, у відповідності з напрямом вітру, із центру АЕС чорним кольором проводять вісь сліду радіоактивної хмари;

  4. на схемі (карті) вимірюють відстань (Х) вздовж вісі сліду від АЕС до заданого об‘єкту і її зміщення від осі за координатою Y : Х = 20 км; Y = 2 км;

  5. у табл. 5 – 6 (додаток 2.3.4) для заданого типу ядерного енергетичного реактору, = 10% і відстані від нього до об‘єкту (Х) знаходять потужність дози випромінювання на вісі сліду (РX.1) через 1 годину після аварії: Рх1 = 0,189, та множать її на величину − зкор = 50/, тобто на 5: отримуючи 0,945 рад/год.;

  6. у табл. 7 – 9 (додаток 2.3.4) знаходять значення коефіцієнту (Ку), що враховує зміну потужності дози в поперечному перетині сліду (за координатою Y ): Ку = 0,09;

  7. розраховують приведене значення заданого часу (час, що пройшов після аварії – tз): tз=TзTав = 17,00 – 12,00 = 5 год.;

  8. за допомогою табл. 10 (додаток 2.3.4) визначають час, що пройшов після аварії, початку формування сліду в районі об’єкту – t: t = 1,0 год.;

  9. зрівнюють заданий час – tз і час початку формування сліду – t:

  10. якщо tз t,, то Аs = 0;

  11. якщо tз t, по табл. 11 – 12 (додаток 2.3.4) визначається коефіцієнт (Кt), враховуючий спад потужності дози випромінювання у часі: tз t = 5 год. > >1 год., тоді Кt = 0,63;

  12. розраховують коефіцієнт (Кw), що враховує електричну потужність ядерного енергетичного реактору (W) і частку радіоактивних речовин, що викинуті з нього в результаті аварії (): Kw=10 –4·n W· = 10-4 1·1000·50 = 5;

  13. у табл. 13 (додаток 2.3.4) для заданого часу tз знаходять значення коефіцієнту (Кзагр): Кзагр = 0,13;

  14. визначають поверхневу активність Аs (щільність забруднення), Кu/м2: