Файл: С.Н. Гринфельд Физические основы электроники уч. пособие.doc
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 29.07.2024
Просмотров: 806
Скачиваний: 1
СОДЕРЖАНИЕ
С.Н. Гринфельд физические основы электроники
1. Электропроводность полупроводников
1.1. Строение и энергетические свойства кристаллов твердых тел
1.2. Электропроводность собственных полупроводников
1.3. Электропроводность примесных полупроводников
1.4. Дрейфовый и диффузионный токи в полупроводниках
2. Электронно-дырочный переход
2.1. Электронно-дырочный переход при отсутствии внешнего напряжения
2.2. Электронно-дырочный переход при прямом напряжении
2.3. Электронно-дырочный переход при обратном напряжении
2.4. Вольт-амперная характеристика электронно- дырочного перехода. Пробой и емкость p-n-перехода
3.1. Общие характеристики диодов
4. Полупроводниковые транзисторы
4.1.2. Принцип действия транзистора
4.1.3. Схемы включения транзисторов
4.1.5. Влияние температуры на статические характеристики бт
4.2.1. Полевые транзисторы с управляющим p-n переходом Структура и принцип действия пт
Схемы включения полевого транзистора
Температурная зависимость параметров птуп
4.2.2. Полевые транзисторы с изолированным затвором
Структуры пт с изолированным затвором
Статические характеристики мдп-транзистора с индуцированным каналом
Статическая характеристика передачи (или сток – затвор)
Статические характеристики мдп-транзистора со встроенным каналом
Максимально допустимые параметры полевых транзисторов
5.2. Диодные тиристоры (динисторы)
5.4. Симметричные тиристоры (симисторы)
5.5. Зависимость работы тиристора от температуры
6.1. Классификация, основные характеристики и параметры усилителей
6.3. Обратные связи в усилителях
6.3.3. Влияние отрицательной ос на нелинейные искажения и помехи
6.3.4. Влияние отрицательной ос на частотные искажения
6.3.5. Паразитные ос и способы их устранения
6.5. Каскады предварительного усиления
6.5.3. Работа каскада с оэ по переменному току
6.5.5. Усилительный каскад на полевом транзисторе
6.5.6. Схема с ос (истоковый повторитель)
7.1. Определение усилителя постоянного тока. Дрейф нуля
7.2. Однотактные усилители прямого усиления
7.3. Дифференциальные усилители
7.3.2. Схемы включения дифференциального усилителя
7.3.3. Коэффициент ослабления синфазного сигнала
7.3.4. Разновидности дифференциальных усилителей
8. Определение и основные характеристики операционных услителей
8.1. Устройство операционных усилителей
8.2. Характеристики операционных усилителей
8.4. Применение операционных усилителей
Неинвертирующий усилитель на оу
И Рис. 8.12. Схема инвертирующего усилителянвертирующий усилитель
У Рис. 8.14. Схема усредняющего усилителясредняющий усилитель
Усилители переменного напряжения
9. Устройства сравнения аналоговых сигналов
10.3. Особенности интегральных схем как нового типа электронных приборов
О Рис. 1. Схема исследования характеристик транзистора по схеме с оЭписание лабораторной установки
Лабораторная работа 2 исследование однокаскадного усилителя с общим эмиттером
Описание лабораторной установки
Лабораторная работа 3 дифференциального усилителя постоянного тока
Описание лабораторной установки
Последовательность расчета усилителя
Последовательность Расчета усилителя в области низких частот
Софья наумовна гринфельд физические основы электроники Учебное пособие
Усилители переменного напряжения
В усилителях переменного напряжения ООС по постоянному току, как правило, выполняется 100 %-й. Так, в схеме (рис. 8.28, а) коэффициент передачи по постоянному току равен единице, а по переменному:
К = 1 + R2 /R1.
Входное сопротивление в данном усилителе очень большое, так как здесь осуществляется компенсация входного тока:
Rвх=R3Ky /K.
При R2= 0 схема (рис. 8.28, а) преобразуется в повторитель напряжения с высоким входным сопротивлением (рис. 8.28, б).
В усилителях переменного напряжения целесообразно использовать только один источник питания положительной или отрицательной полярности. Однако при этом на входе ОУ необходимо включать цепь для формирования напряжения смещения, с помощью которой на выходе ОУ устанавливается напряжение, равное половине напряжения питания.
Так, в схеме (рис.8.29,а) напряжение смещения формируется делителем напряжения R3, R4, при этом R3 = R4. Коэффициент передачи для данной схемы при xс1 << R1 равен:
К = R2/R1.
Конденсатор С2предназначен для подавления пульсаций. В схеме (рис. 8.29, б) напряжение смещения формируется делителемR1,R4. Для данной схемы приxc1<<R3и хс2<<R1||R4коэффициент передачи равен:
К = 1+R2 /(R1||R4).
Врассмотренных схемах используется емкостная развязка входных цепей. Очевидно, что при подключении входного сигнала разделительный конденсатор С1будет заряжаться с постоянной времениτ=R1C1(рис. 8.29,a), что обусловливает большое время установления номинального режима работы ОУ.
9. Устройства сравнения аналоговых сигналов
9.1. Компараторы
Выходное напряжение усилителя ограничено величиной ±Uвых max. Поскольку коэффициент усиления операционного усилителя (КU оу) велик, то значение выходного напряжения (Uвых = ±Uвых max) достигается при очень малых входных напряжениях:
U
Рис.
9.1. Схема компаратора
Поэтому можно считать.
То есть операционный усилитель является схемой сравнения входных сигналов – компаратором.
Компараторыпредставляют собой устройства, предназначенные для сравнения по уровню двух входных напряжений и скачкообразного изменения выходного напряжения в случае, когда одно из сравниваемых напряжений больше другого.
Компаратор должен иметь низкое напряжение сдвига, низкий дрейф напряжения сдвига, устойчиво работать без самовозбуждения и иметь низкое значение тока смещения. Один вход компаратора (рис. 9.1) соединен с источником опорного напряжения, а на другой подается входной сигнал. Когда Uвх подается на инвертирующий вход и Uоп > 0, выходное напряжение будет отрицательным при Uвх > Uоп, и положительным при Uвх < Uоп.
К
Рис.
9.2. График работы компаратора
Если, например, изменение выходного напряжения составляет 5 В, а коэффициент усиления компаратора равен 100 000, то разность входного и опорного напряжений (Uвх – Uоп.), вызывающая изменение выходного напряжения, будет равна:
мВ,
то есть сравнение двух уровней напряжения осуществляется с высокой точностью. Но эта схема обладает существенным недостатком: если входной сигнал изменяется медленно и его величина близка к Uоп, то шумы, содержащиеся в Uвх, могут вызвать ложные срабатывания (рис. 9.3).
Более устойчивым к действиям помех является компаратор, в котором ОУ охвачен положительной обратной связью (ПОС), осуществляемой по неинвертирующему входу с помощью резисторови(рис. 9.3, а ). Такой компаратор обладает передаточной характеристикой с гистерезисом (рис. 9.3, б ). Схема известна под названием триггера Шмита или порогового устройства.
Переключение схемы (рис. 9.4) в состояние -Uвых.maxпроисходит при достиженииUвхнапряжения (порога) срабатывания (Uср), а возвращение в исходное состояние (Uвых= +Uвых.max) происходит при сниженииUвхдо напряжения (порога) отпускания (-Uотп). Значения пороговых напряжений находят по схеме, положивU0= 0:
;
.
Частным случаем схемы (см. рис. 9.4) при = 0 является схема (рис. 9.5). Ее пороговые напряжения и зона гистерезиса (рис. 9.6) составляют:
; ;.
Величина гистерезиса (зоны нечувствительности) определяется пороговыми напряжениями. Выбирая необходимые значения пороговых напряженийи, можно изменять «зону нечувствительности» компаратора в зависимости от уровня помех (рис. 9.6).
Компаратор с ПОС может использоваться в качестве формирователя прямоугольных импульсов из напряжения произвольной формы.
9.2. Мультивибратор
Схема симметричного мультивибратора на ОУ в автоколебательном режиме, представляющего собой генератор прямоугольных импульсов (рис. 9.7, а) содержит как цепь отрицательной ОС на элементах , С, так и цепь положительной ОС, образованную делителемR1,R2.
В момент подключения к схеме напряжения питания на инвертирующий вход ОУ поступает напряжение , так как конденсатор С не успевает зарядиться, а на неинвертирующий вход с делителяR1,R2поступает напряжение
.
Так как усилитель охвачен цепью безинерционной ПОС, а напряжение на его инвертирующем входе равно нулю, на выходе ОУ равновероятно может установиться любое из его максимально возможных напряжений.
Пусть Uвых.max0, тогда иU20 . При этом конденсатор С (рис. 9.7, б) начнет заряжаться через резистортоком(интервал времени 0 –), стремясь зарядиться до напряжения +Uвых.max. В момент временинапряжение на конденсаторе достигнет уровня +U2, а затем несколько превысит его (на доли милливольт), то есть напряжение на инвертирующем входе ОУ окажется больше, чем на неинвертирующем.
Выходное напряжение при этом скачком изменяет свою полярность, делаясь равным -Uвых.max, после чего начинается перезаряд конденсатора током I2 противоположного направления. Как только конденсатор С зарядится до напряжения -U2 (момент времени t2) полярность выходного напряжения вновь скачком изменится, то есть станет положительной. Затем начинается перезаряд конденсатора С током I1, и процесс повторяется.
Таким образом, схема генерирует последовательность импульсов со скважностью 2 и полным размахом выходного напряжения 2·Uвых.max. Длительность выходного импульса равна:
.
Рис.
9.5. Схема компаратора с положительной
обратной связью и нулевым опорным
напряжением (а) и его передаточная
характеристика (б)
10. Микроэлектроника
10.1. Основные определения
Микроэлектроника– это раздел электроники, охватывающий исследования и разработку качественно нового типа электронных приборов (интегральных микросхем) и принципов их применения.
Первые этапы развития микроэлектроники были характерны главным образом прогрессом в области технологии ИС. На этих этапах совершенствовались методы изоляции элементов, методы повышения степени интеграции, способы монтажа навесных компонентов и т.п. Что касается схемотехники (т.е. конфигурации схем, подлежащих интеграции), то на первых порах она заимствовалась из арсенала дискретной транзисторной электроники.
Однако вскоре стало ясно, что качественно новой технологической реализации, свойственной ИС, должны соответствовать адекватные схемные решения. Далеко не все схемы, считавшиеся типичными в дискретной транзисторной электронике, оказались приемлемыми в микроэлектронике. И наоборот, многие схемы, которые в дискретной транзисторной электронике считались «экзотическими» и не имели широкого распространения, в микроэлектронике оказались приемлемыми и даже оптимальными. Поэтому схемотехника ИС отнюдь не совпадает с обычной транзисторной схемотехникой.
В процессе развития микроэлектроники появилось немало специфических элементов ИС, которые не имеют аналогов в транзисторной схемотехнике и не выпускаются в качестве дискретных полупроводниковых приборов (например, многоэмиттерный транзистор, приборы с зарядовой связью и др.). Интегральные схемы, в которых используются такие специфические элементы, не могут быть даже промоделированы на дискретных компонентах.
Интегральная микросхема(или просто интегральная схема) - это совокупность, как правило, большого количества взаимосвязанных компонентов (транзисторов, диодов, конденсаторов, резисторов и т.п.), изготовленная в едином технологическом цикле, на одной и той же несущей конструкции (подложке) и выполняющая определенную функцию преобразования информации.
Термин «интегральная схема» (ИС) отражает факт объединения (интеграции) отдельных деталей – компонентов – в конструктивно единый прибор, а также факт усложнения выполняемых этим прибором функций по сравнению с функциями отдельных компонентов.