Файл: С.Н. Гринфельд Физические основы электроники уч. пособие.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 29.07.2024

Просмотров: 762

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

С.Н. Гринфельд физические основы электроники

1. Электропроводность полупроводников

1.1. Строение и энергетические свойства кристаллов твердых тел

1.2. Электропроводность собственных полупроводников

1.3. Электропроводность примесных полупроводников

1.4. Дрейфовый и диффузионный токи в полупроводниках

2. Электронно-дырочный переход

2.1. Электронно-дырочный переход при отсутствии внешнего напряжения

2.2. Электронно-дырочный переход при прямом напряжении

2.3. Электронно-дырочный переход при обратном напряжении

2.4. Вольт-амперная характеристика электронно- дырочного перехода. Пробой и емкость p-n-перехода

3.1. Общие характеристики диодов

3.2. Виды диодов

4. Полупроводниковые транзисторы

4.1. Биполярные транзисторы

4.1.1. Общая характеристика

4.1.2. Принцип действия транзистора

4.1.3. Схемы включения транзисторов

4.1.5. Влияние температуры на статические характеристики бт

4.16. Составной транзистор

4.2. Полевые транзисторы

4.2.1. Полевые транзисторы с управляющим p-n переходом Структура и принцип действия пт

Характеристики птуп

Параметры птуп

Эквивалентная схема птуп

Схемы включения полевого транзистора

Температурная зависимость параметров птуп

4.2.2. Полевые транзисторы с изолированным затвором

Структуры пт с изолированным затвором

Статические характеристики мдп-транзистора с индуцированным каналом

Статическая характеристика передачи (или сток – затвор)

Статические характеристики мдп-транзистора со встроенным каналом

Максимально допустимые параметры полевых транзисторов

5. Тиристоры

5.1. Классификация тиристоров

5.2. Диодные тиристоры (динисторы)

5.3. Триодные тиристоры

5.4. Симметричные тиристоры (симисторы)

5.5. Зависимость работы тиристора от температуры

6. Усилители

6.1. Классификация, основные характеристики и параметры усилителей

6.2. Искажения в усилителях

6.3. Обратные связи в усилителях

6.3.1. Виды обратных связей

6.3.2. Влияние последовательной отрицательной ос по напряжению на входное и выходное сопротивления усилителя

6.3.3. Влияние отрицательной ос на нелинейные искажения и помехи

6.3.4. Влияние отрицательной ос на частотные искажения

6.3.5. Паразитные ос и способы их устранения

6.4. Усилители низкой частоты

6.5. Каскады предварительного усиления

6.5.1. Каскад с оэ

6 Рис. 6.21. График разрешенной области надежной работы транзистора.5.2. Стабилизация режима покоя каскада с оэ

6.5.3. Работа каскада с оэ по переменному току

6.5.4. Каскад с ок

6.5.5. Усилительный каскад на полевом транзисторе

6.5.6. Схема с ос (истоковый повторитель)

7. Усилители постоянного тока

7.1. Определение усилителя постоянного тока. Дрейф нуля

7.2. Однотактные усилители прямого усиления

7.3. Дифференциальные усилители

7.3.1. Схема дифференциального каскада и ее работа при подаче дифференциального и синфазного входных сигналов

7.3.2. Схемы включения дифференциального усилителя

7.3.3. Коэффициент ослабления синфазного сигнала

7.3.4. Разновидности дифференциальных усилителей

8. Определение и основные характеристики операционных услителей

8.1. Устройство операционных усилителей

8.2. Характеристики операционных усилителей

Усилительные характеристики

Дрейфовые характеристики

Входные характеристики

Выходные характеристики

Энергетические характеристики

Частотные характеристики

Скоростные характеристики

8.3. Классификация оу

8.4. Применение операционных усилителей

Неинвертирующий усилитель на оу

Повторитель напряжения

И Рис. 8.12. Схема инвертирующего усилителянвертирующий усилитель

Инвертирующий сумматор

У Рис. 8.14. Схема усредняющего усилителясредняющий усилитель

Внешняя компенсация сдвига

Дифференциальный усилитель

Неинвертирующий сумматор

Интегратор

Дифференциатор

Логарифмический усилитель

Усилители переменного напряжения

9. Устройства сравнения аналоговых сигналов

9.1. Компараторы

9.2. Мультивибратор

10. Микроэлектроника

10.1. Основные определения

10.2. Типы Интегральных схем

10.2.1. Классификация ис

10.2.2. Полупроводниковые ис

10.2.3. Гибридные ис

10.3. Особенности интегральных схем как нового типа электронных приборов

ЛабораторНые рабоТы Лабораторная работа 1 исследование статистических характеристик биполярного транзистора

О Рис. 1. Схема исследования характеристик транзистора по схеме с оЭписание лабораторной установки

Порядок выполнения работ

Лабораторная работа 2 исследование однокаскадного усилителя с общим эмиттером

Описание лабораторной установки

Порядок выполнения работы

Лабораторная работа 3 дифференциального усилителя постоянного тока

Описание лабораторной установки

Порядок выполнения работы

Контрольная работа

Задание

Последовательность расчета усилителя

Последовательность Расчета усилителя в области низких частот

Экзаменационные вопросы

Литература

Содержание

Софья наумовна гринфельд физические основы электроники Учебное пособие

681013, Комсомольск-на-Амуре, пр. Ленина, 27.

Минимального значения едрможно достичь за счет снижения величинRэ,RбиRк. Следует подчеркнуть, что работа УПТ может быть удовлетво­рительной только при превышении минимальным входным сигна­лом величиныeдр. Поэтому основной задачей следует считать всемерное снижение дрейфа нуля усилителя.

С целью снижения дрейфа нуля в УПТ могут быть использова­ны следующие способы:

  • применение глубоких ООС;

  • использование термокомпенсирующих элементов;

  • преобразование постоянного тока в переменный и усиление переменного тока с последующим выпрямлением;

  • построение усилителя по балансной схеме и др.


7.2. Однотактные усилители прямого усиления

Однотактные УПТ прямого усиления по сути своей являются обычными многокаскадными усилителями с непосредственной связью. В таком усилителе резисторы в цепи эмиттера не только создают местную последователь­ную ООС по току, но и обеспечивают необходимое напряжение Uбэ пв своих каскадах. В многокаскадном усилителе наблюдается последовательное повышение потенциала на эмиттере транзистора каждого последующего каскада. Необходи­мость повышения потенциалов эмиттера от каскада к каскаду обусловлена тем, что за счет непосредственной связи потенциал коллектора у каждого последующего транзистора оказывается выше, чем у предыдущего.

Обеспечить необходимый режим покоя в каскадах рассматриваемого усилителя можно и за счет последовательного уменьшения номиналов коллекторных резисторов от каскада к каскаду (Rк1 > Rк2). Однако в этом случае, как и в рассмотренном в разделе 7.1, будет падать усиление УПТ.

На рис. 7.2, приведены принципиальные схемы двух вариантов каскадов УПТ, в одном из которых (рис. 7.2, а) потенциал эмиттера устанавливается за счет балластного сопротивления Roво втором (рис. 7.2, б) – за счет применения опорного диодаD. Отметим, что вместо опорного диода можно включить несколько обычных прямосмещенныхp-n-переходов. Часто используются сочетания обоих вариантов схем.

При разработке УПТ необходимо обеспечивать согласование потенциалов не только между каскадами, но и с источником сигнала и нагрузкой. Если источник сигнала включить на входе усилителя между базой первого транзистора и общей шиной, то через него будет протекать постоянная составляющая тока от источника питания Eк. Для устранения этого тока обычно включают генератор входного сигнала между базой транзистора Т1(рис. 7.3) и средней точкой специального делителя напряжения, образованного резисторамиR1иR2. При правильно выбранном делителе потенциал его средней точки в режиме покоя равен потенциалу покоя на базе первого транзистора.

Н

Рис. 7.3. Способ подачи входного сигнала УПТ (а), способ включения нагрузки (б)

агрузка усилителя обычно включается в диагональ моста, образованного элементами выходной, цепи УПТ (рис. 7.3, б). Рассматриваемый здесь способ включения нагрузки используется для полученияUн = 0 при Ек= 0. Номиналы резисторовR3иR4выбираются таким образом, чтобы напряжение средней точки делителя равнялось напряжению на коллекторе выходного транзистора в режиме покоя. При этом в нагрузке для режима покоя не будет протекать тока.


В каждом каскаде УПТ прямого усиления за счет резисторов в цепи эмиттера образуется глубокая ООС. Обычно максимальное усиление свойственно первому каскаду, у которого Rкимеет наибольшее значение. Однако и в последующем каскаде УПТ, гдеRкменьше, все равно его номинал должен быть больше номиналаRэ.

В многокаскадных УПТ прямого усиления может происходить частичная компенсация дрейфа нуля. Так, положительное приращение тока коллектора, первого транзистора вызовет отрицательное приращение тока базы и, следовательно, тока коллектора второго транзистора. В результате суммарный дрейф нуля второго каскада может оказаться меньше, чем в отсутствие первого каскада и в идеальном случае сведен к нулю. Заметим, что полная компенсация дрейфа нуля возможна лишь при специальном подборе элементов и только для некоторой конкретной температуры. Хотя на практике это почти и недо­стижимо, тем не менее, в УПТ с четным числом усилительных каскадов наблюдается снижение дрейфа нуля.

Способ построения УПТ на основе непосредственной связи в усилительных каскадах с глубокой ООС может быть использован для получения сравнительно небольшого коэффициента усиления (в несколько десятков) при достаточно большом Uвх ≥ 50 мВ. Если в таких УПТ попытаться повысить Кu, то неизбежно получим резкое возрастание дрейфа нуля, вызванного не только температурной нестабильностью, но и нестабильностью источников питания. Отметим, что применение традиционных методов уменьшения влияния нестабильностей Екс помощью фильтрующих конденсаторов здесь не дает желаемого результата (слишком низкие частоты).

Для снижения температурного дрейфа в УПТ прямого усиления иногда применяют температурную компенсацию. В настоящее время в качестве термокомпенсирующего элемента обычно используется диод в прямом смешении, включенный в цепь базы транзистора. Принцип построения таких устройств практически одинаков для усилителей постоянного и переменного тока. Все рассмотренные УПТ имеют большой температурный дрейф (eдр составляет единицы милливольт на градус). Кроме того, в них отсутствует зримая компенсация временного дрейфа и влияния низкочастотных шумов. Эти факторы могут оказаться даже более существенными, чем температурный дрейф нуля.


7.3. Дифференциальные усилители

7.3.1. Схема дифференциального каскада и ее работа при подаче дифференциального и синфазного входных сигналов

В настоящее время наибольшее распространение получили диф­ференциальные (параллельно-балансные или разностные) усилители. Такие усилители просто реализуются в виде монолитных ИС и широко выпускаются отечественной промышленностью (К118УД, КР198УТ1 и др.). Их отличает высокая стабильность работы, малый дрейф нуля, большой коэффициент усиления дифференциального сигнала и большой коэффициент подавления синфазных помех.

На рис. 7.4 приведена принципиальная схема простейшего варианта дифференциального усилителя (ДУ). Любой ДУ выпол­няется по принципу сбалансированного моста, два плеча которого образованы резисторами Rк1 и Rк2, а два других – транзисторами Т1 и Т2. Сопротивление нагрузки включается между коллекторами транзисторов, т.е. в диагональ моста. Сразу отметим, что резисторы R01 и R02 имеют небольшие значения, а часто и вообще отсутствуют. Можно считать, что резистор RЭ подключен к эмиттерам транзисторов. Питание ДУ осуществляется от двух источников, напряжения которых равны (по модулю) друг другу. Таким образом, суммарное напряжение питания ДУ равно 2Е.

И

Рис. 7.4. Схема дифференциального каскада

спользование второго источника (-Е) позволяет снизить потенциалы эмиттеров транзисторов Т1и Т2до потенциала общей шины. Это обстоятельство дает возможность подавать сигналы на входы ДУ без введения дополнительных компенсирующих напряжений. При анализе работы ДУ принято выделять в нем два общих плеча, одно из которых состоит из транзистора Т1и резистораRк1(иR01), второе – из транзистора Т2и резистораRк2(иR02). Каждое общее плечо ДУ является каскадом ОЭ. Таким образом, можно заключить, что ДУ состоит из двух каскадов ОЭ. В общую цепь эмиттеров транзисторов включен резисторRЭ, которым и задается их общий ток.

Для того чтобы ДУ мог качественно и надежно выполнять свои функции, а также в процессе длительной работы сохранять свои параметры и уникальные свойства, в реальных усилителях требуется выполнить два основных требования. Рассмотрим эти требования последовательно.


Первое требованиесостоит в симметрии обоих плеч ДУ. По этому требованию необходимо обеспечить идентичность параметров каскадов ОЭ, образующих ДУ. При этом должны быть одинаковы параметры транзисторов Т1и Т2, а также выполнялось условие:Rк1 =Rк2(иR01 =R02). Если первое требование выполнено полностью, то больше ничего и не требуется для получения идеального ДУ. Действительно, приUвх1 =Uвх2 = 0 достигается полный баланс моста, т.е. потенциалы коллекторов транзисторов Т1и Т2одинаковы, следовательно, напряжение на нагрузке равно нулю. При одинаковом дрейфе нуля в обоих каскадах с общим эмиттером (плечах ДУ) потенциалы коллекторов будут изменяться всегда одинаково, поэтому на выходе ДУ дрейф нуля будет от­сутствовать.

За счет симметрии общих плеч ДУ будет обес­печиваться высокая стабильность при изменении напряжения питания, температуры, радиационного воздействия и т.д. Но как обеспечить симметрию общих плеч в ДУ? На первый взгляд, может показаться, что решить этот вопрос довольно просто. Действительно, всегда можно подобрать пары транзисторов и резисторов с весьма близкими параметрами. Если собрать ДУ на таких дискретных элементах, т, может быть, и будет получен желаемый результат, но только в относительно небольшой промежуток времени.

С течением времени параметры транзисто­ров и резисторов будут изменяться различным образом в соот­ветствии с законами своей собственной структуры, естественно, что на них различным образом будут влиять и внешние факторы, а следовательно, нарушится симметрия плеч со всеми вытека­ющими отсюда последствиями. В конечном счете, можно за­ключить, что на дискретных элементах (изготовленных в разное время и в разных условиях) осуществить выполнение первого требования для ДУ практически невозможно. Это объясняет тот факт, что прекрасные свойства ДУ не нашли должного использования в дискретной электронике.

Приблизиться к выполнению первого основного требования для ДУ позволила микроэлектроника. Ясно, что симметрию общих плеч ДУ могут обеспечить лишь идентичные элементы, в которых все одинаково и которые были изготовлены в аб­солютно одинаковых условиях. Так, в монолитной ИС близко расположенные элементы действительно имеют почти одинаковые параметры. Следовательно, в монолитных ИС первое требование к ДУ почти выполнено.

Второеосновноетребованиесостоит в обеспечении глубокой ООС для синфазного сигнала. Синфазными называются одинаковые сигналы, т.е. сигналы, имеющие равные амплитуды, формы и фазы. Если на входах ДУ (см. рис. 7.4) присутствуютUвх1 =Uвх2, причем с совпадающими фазами, то можно говорить о поступлении на вход ДУсинфазного сигнала. Синфазные сигналы обычно обусловлены наличием помех, наводок и т.д. Часто они имеют большие амплитуды (значительно превышающие полезный сигнал) и являют­ся крайне нежелательными, вредными для работы любого усилителя.