Файл: С.Н. Гринфельд Физические основы электроники уч. пособие.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 29.07.2024

Просмотров: 774

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

С.Н. Гринфельд физические основы электроники

1. Электропроводность полупроводников

1.1. Строение и энергетические свойства кристаллов твердых тел

1.2. Электропроводность собственных полупроводников

1.3. Электропроводность примесных полупроводников

1.4. Дрейфовый и диффузионный токи в полупроводниках

2. Электронно-дырочный переход

2.1. Электронно-дырочный переход при отсутствии внешнего напряжения

2.2. Электронно-дырочный переход при прямом напряжении

2.3. Электронно-дырочный переход при обратном напряжении

2.4. Вольт-амперная характеристика электронно- дырочного перехода. Пробой и емкость p-n-перехода

3.1. Общие характеристики диодов

3.2. Виды диодов

4. Полупроводниковые транзисторы

4.1. Биполярные транзисторы

4.1.1. Общая характеристика

4.1.2. Принцип действия транзистора

4.1.3. Схемы включения транзисторов

4.1.5. Влияние температуры на статические характеристики бт

4.16. Составной транзистор

4.2. Полевые транзисторы

4.2.1. Полевые транзисторы с управляющим p-n переходом Структура и принцип действия пт

Характеристики птуп

Параметры птуп

Эквивалентная схема птуп

Схемы включения полевого транзистора

Температурная зависимость параметров птуп

4.2.2. Полевые транзисторы с изолированным затвором

Структуры пт с изолированным затвором

Статические характеристики мдп-транзистора с индуцированным каналом

Статическая характеристика передачи (или сток – затвор)

Статические характеристики мдп-транзистора со встроенным каналом

Максимально допустимые параметры полевых транзисторов

5. Тиристоры

5.1. Классификация тиристоров

5.2. Диодные тиристоры (динисторы)

5.3. Триодные тиристоры

5.4. Симметричные тиристоры (симисторы)

5.5. Зависимость работы тиристора от температуры

6. Усилители

6.1. Классификация, основные характеристики и параметры усилителей

6.2. Искажения в усилителях

6.3. Обратные связи в усилителях

6.3.1. Виды обратных связей

6.3.2. Влияние последовательной отрицательной ос по напряжению на входное и выходное сопротивления усилителя

6.3.3. Влияние отрицательной ос на нелинейные искажения и помехи

6.3.4. Влияние отрицательной ос на частотные искажения

6.3.5. Паразитные ос и способы их устранения

6.4. Усилители низкой частоты

6.5. Каскады предварительного усиления

6.5.1. Каскад с оэ

6 Рис. 6.21. График разрешенной области надежной работы транзистора.5.2. Стабилизация режима покоя каскада с оэ

6.5.3. Работа каскада с оэ по переменному току

6.5.4. Каскад с ок

6.5.5. Усилительный каскад на полевом транзисторе

6.5.6. Схема с ос (истоковый повторитель)

7. Усилители постоянного тока

7.1. Определение усилителя постоянного тока. Дрейф нуля

7.2. Однотактные усилители прямого усиления

7.3. Дифференциальные усилители

7.3.1. Схема дифференциального каскада и ее работа при подаче дифференциального и синфазного входных сигналов

7.3.2. Схемы включения дифференциального усилителя

7.3.3. Коэффициент ослабления синфазного сигнала

7.3.4. Разновидности дифференциальных усилителей

8. Определение и основные характеристики операционных услителей

8.1. Устройство операционных усилителей

8.2. Характеристики операционных усилителей

Усилительные характеристики

Дрейфовые характеристики

Входные характеристики

Выходные характеристики

Энергетические характеристики

Частотные характеристики

Скоростные характеристики

8.3. Классификация оу

8.4. Применение операционных усилителей

Неинвертирующий усилитель на оу

Повторитель напряжения

И Рис. 8.12. Схема инвертирующего усилителянвертирующий усилитель

Инвертирующий сумматор

У Рис. 8.14. Схема усредняющего усилителясредняющий усилитель

Внешняя компенсация сдвига

Дифференциальный усилитель

Неинвертирующий сумматор

Интегратор

Дифференциатор

Логарифмический усилитель

Усилители переменного напряжения

9. Устройства сравнения аналоговых сигналов

9.1. Компараторы

9.2. Мультивибратор

10. Микроэлектроника

10.1. Основные определения

10.2. Типы Интегральных схем

10.2.1. Классификация ис

10.2.2. Полупроводниковые ис

10.2.3. Гибридные ис

10.3. Особенности интегральных схем как нового типа электронных приборов

ЛабораторНые рабоТы Лабораторная работа 1 исследование статистических характеристик биполярного транзистора

О Рис. 1. Схема исследования характеристик транзистора по схеме с оЭписание лабораторной установки

Порядок выполнения работ

Лабораторная работа 2 исследование однокаскадного усилителя с общим эмиттером

Описание лабораторной установки

Порядок выполнения работы

Лабораторная работа 3 дифференциального усилителя постоянного тока

Описание лабораторной установки

Порядок выполнения работы

Контрольная работа

Задание

Последовательность расчета усилителя

Последовательность Расчета усилителя в области низких частот

Экзаменационные вопросы

Литература

Содержание

Софья наумовна гринфельд физические основы электроники Учебное пособие

681013, Комсомольск-на-Амуре, пр. Ленина, 27.

Положительный заряд дырки компенсирует отрицательный заряд иона примеси, и слой кристалла остается электрически нейтральным. В случае прихода в данный слой электрона из другого слоя и рекомбинации его с дыркой неподвижные заряды ионов примеси создают нескомпенсированный отрицательный объемный заряд.

Примесь, атомы которой захватывают электроны соседних атомов, называют акцепторной. Введение акцепторной примеси приводит к образованию избыточного числа дырок, концентрация которых значительно превышает концентрацию электронов, возникающих вследствие разрушения ковалентных связей полупроводника:

рp >np.

В электрическом токе, возникающем в таком полупроводнике, преобладает дырочная составляющая. Полупроводник с преобладанием дырочной электропроводности называют полупроводником р-типа. В таком полупроводнике дырки являются основными носителями заряда, а электроны – неосновными носителями заряда.

Энергетическая диаграмма полупроводника р-типа представлена на рис. 1.7, б. Локальные уровни энергии атомов акцепторной примеси (показаны штрихами) расположены в запрещенной зоне вблизи валентной зоны исходного полупроводника. Все эти уровни свободны при температуре абсолютного нуля, а число их соответствует количеству атомов примеси в кристалле. Величина энергии ∆Wдравна разности между энергией акцепторного уровня и верхнего уровня валентной зоны. Она, как и величина ∆Wд для полупроводниковn-типа, мала и составляет 0,01 – 0,07 эВ в зависимости от материала исходного полупроводника и примеси. Поэтому при комнатной температуре все акцепторные уровни энергии оказываются занятыми электронами, которые переходят на них из валентной зоны. В результате в валентной зоне появляется большое количество вакантных уровней – дырок.

Таким образом, в примесных полупроводниках основные носители заряда появляются главным образом за счет атомов примеси, а неосновные – за счет разрушения ковалентных связей и вызванной этим генерации пар носителей заряда. Концентрация основных носителей заряда превышает на два-три порядка концентрацию неосновных носителей. При этом удельная электрическая проводимость примесного полупроводника превышает удельную проводимость собственного полупроводника в сотни тысяч раз.

Кроме кремния и германия в качестве исходных полупроводниковых материалов в промышленности применяют арсенид галлия, селен, оксиды, карбиды и другие химические соединения элементов III и V групп, а также II и VI групп периодической системы Менделеева.



1.4. Дрейфовый и диффузионный токи в полупроводниках

Электрический ток может возникнуть в полупроводнике только при направленном движении носителей заряда, которое создается либо под воздействием электрического поля (дрейф), либо вследствие неравномерного распределения носителей заряда по объему кристалла (диффузия). Если электрическое поле отсутствует, и носители заряда имеют в кристалле равномерную концентрацию, то электроны и дырки совершают непрерывное хаотическое тепловое движение. В результате столкновения носителей заряда друг с другом и с атомами кристаллической решетки скорость и направление их движения все время изменяются, так что тока в кристалле не будет.

Под действием приложенного к кристаллу напряжения в нем возникает электрическое поле. Движение носителей заряда упорядочивается: электроны перемещаются по направлению к положительному электроду, дырки – к отрицательному. При этом не прекращается и тепловое движение носителей заряда, вследствие которого происходят столкновения их с атомами полупроводника и примеси.

Направленное движение носителей заряда под действием сил электрического поля называют дрейфом, а вызванный этим движением ток –дрейфовым током. При этом характер тока может быть электронным, если он вызван движением электронов, или дырочным, если он создается направленным перемещением дырок.

Средняя скорость носителей заряда в электрическом поле прямо пропорциональна напряженности электрического поля:

ν=μE

Коэффициент пропорциональности называют подвижностью электронов (n), или дырок (p). Свободные электроны движутся в пространстве между узлами кристаллической решетки, а дырки – по ковалентным связям, поэтому средняя скорость, а следовательно, и подвижность электронов больше, чем дырок. У кремния подвижность носителей заряда меньше, чем у германия.

В собственных полупроводниках концентрации электронов и дырок одинаковы, но вследствие их разной подвижности электронная составляющая тока больше дырочной. В примесных полупроводниках концентрации электронов и дырок существенно отличаются, характер тока определяется основными носителями заряда: в полупроводниках р-типа – дырками, а в полупроводниках n-типа – электронами.

При неравномерной концентрации носителей заряда вероятность их столкновения друг с другом больше в тех слоях полупроводника, где их концентрация выше. Совершая хаотическое тепловое движение, носители заряда отклоняются в сторону, где меньше число столкновений, т.е. движутся в направлении уменьшения их концентрации.


Направленное движение носителей заряда из слоя с более высокой их концентрацией в слой, где концентрация ниже, называют диффузией, а ток, вызванный этим явлением, – диффузионным током. Этот ток, как и дрейфовый, может быть электронным или дырочным.

Степень неравномерности распределения носителей заряда характеризуется градиентом концентрации; его определяют как отношение изменения концентрации к изменению расстояния, на котором оно происходит. Чем больше градиент концентрации, т.е. чем резче она изменяется, тем больше диффузионный ток.

Электроны, перемещаясь из слоя с высокой концентрацией в слой с более низкой концентрацией, по мере продвижения рекомбинируют с дырками, и наоборот, диффундирующие в слой с пониженной концентрацией дырки рекомбинируют с электронами. При этом избыточная концентрация носителей заряда уменьшается.


2. Электронно-дырочный переход

2.1. Электронно-дырочный переход при отсутствии внешнего напряжения

Электронно-дырочный переход, или сокращенно p-n-переход, – это тонкий переходный слой в полупроводниковом материале на границе между двумя областями с различными типами электропроводности (одна – n-типа, другая – р-типа). Электронно-дырочный переход благодаря своим особым свойствам является основным элементом многих полупроводниковых приборов и интегральных микросхем.

Наряду с p-n-переходами в полупроводниковой технике используются и другие виды электрических переходов, например металл-полупроводник, а также переходы между двумя областями полупроводника одного типа, отличающимися концентрацией примесей, а значит, и значениями удельной проводимости: электронно-электронный (n-n+-переход) и дырочно-дырочный(р-р+-переход). Знак «плюс» относится к слою с большей концентрацией основных носителей заряда.

Электронно-дырочный переход получают в едином кристалле полупроводника, вводя в одну область донорную примесь, а в другую – акцепторную. Атомы примесей при комнатной температуре оказываются полностью ионизированными. При этом атомы акцепторов, присоединив к себе электроны, создают дырки (получается p-область), а атомы доноров отдают электроны, становящиеся свободными (создается n-область) (рис. 2.1, а).

Для простоты примем концентрации основных носителей заряда в обеих областях одинаковыми:

pp=nn,

где pp концентрация дырок в р-области; nn концентрация электронов вn-области. Такой p-n-переход называют симметричным

В каждой области кроме основных носителей заряда имеются неосновные носители, концентрация, которых значительно меньше, чем основных:

pn<<nn иnp<<pp,

где pnконцентрация дырок вn-области; npконцентрация электронов в р-области.

Из распределения концентраций основных и неосновных носителей заряда в двухслойной структуре (рис. 2.1, 6) видно, что на границе двух областей возникает разность концентраций одноименных носителей заряда. Одни и те же носители заряда в одной области являются основными, а в другой – неосновными, так что дырок в р-области гораздо больше, чем в n-области, и наоборот, электронов в n-области значительно больше, чем в р-области.