ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 02.08.2024
Просмотров: 86
Скачиваний: 0
СОДЕРЖАНИЕ
Значение и теоретические основы выборочного наблюдения
8.2 Методы (алгоритмы) отбора единиц в выборочную совокупность
8.3 Собственно-случайная (простая случайная) выборка
8.4 Механическая (систематическая) выборка
8.5 Типическая (стратифицированная) выборка
8.7 Практика применения выборочного наблюдения в социально-экономических исследованиях
Тема 8 выборочное наблюдение
8.1
Значение и теоретические основы выборочного наблюдения
Выборочным называется такое несплошное наблюдение, при котором признаки регистрируются у отдельных единиц изучаемой статистической совокупности, отобранных с использованием специальных методов, а полученные в процессе обследования результаты с определенным уровнем вероятности распространяются на всю исходную совокупность.
Выборочное наблюдение нельзя отождествлять с несплошным обследованием вообще, так как оно является лишь одним из видов последнего, наиболее проработанным с методологической и организационной точек зрения. Помимо выборочного наблюдения несплошное обследование может осуществляться путем монографического описания, методом основного массива или на основе различных видованкетирования, когда отсутствуют какие-либо специальные методы отбора респондентов и процент заполненных и возвращенных анкет заранее не известен.
Преимущества выборочного наблюдения заключаются в существенной экономии различного вида ресурсов, а именно:
финансовых средств, затрачиваемых на сбор и обработку данных, подготовку и оплату кадров;
материально-технических ресурсов (канцелярские товары, оргтехника, расходные материалы, транспортное обслуживание и т.п.);
трудовых ресурсов, привлекаемых к обследованию на всех его этапах;
времени, затрачиваемого как на получение первичной информации, так и на последующую ее обработку, вплоть до публикации итоговых материалов.
В то же время необходимо четко представлять, что выборочное наблюдение, как бы грамотно с методологической точки зрения оно ни было организовано, всегда связано с определенными, пусть небольшими и измеряемыми ошибками. Поэтому, когда вариация регистрируемых признаков очень сильная и процент отбора для получения выборочных значений с заданной точностью достигает 20-25%, следует правильно оценить целесообразность несплошного обследования, сопоставив достаточно большие затраты всех ресурсов на такую объемную выборку и ожидаемые погрешности статистических характеристик. Вполне вероятно, что проведение сплошного обследования в подобных случаях будет более оправданным.
В то же время при решении ряда задач выборочное наблюдение является единственно возможным способом получения необходимой информации. Так, контроль многих видов продукции связан с их порчей, потерей товарного вида, нарушением герметизации и т.п. Например, нельзя проверить каждую производимую предприятием электролампу на соблюдение требований по продолжительности горения, Нельзя проверить на соответствие стандартам каждого пакета с соком или молочной продукцией, так как это связано с вскрытием их упаковки. В подобных случаях контроль качества может осуществляться только с использованием выборочного метода.
Реализация выборочного метода базируется на понятиях генеральной и выборочной совокупностей.
Генеральной совокупностью называется вся исходная изучаемая статистическая совокупность, из которой на основе отбора единиц или групп единиц формируетсясовокупность выборочная. Поэтому генеральную совокупность также называют основой выборки.
Отбор единиц в выборочную совокупность может быть повторным или бесповторным.
При повторном отборе попавшая в выборку единица подвергается обследованию, т.е. регистрации значений ее признаков, возвращается в генеральную совокупность и наравне с другими единицами участвует в дальнейшей процедуре отбора. Таким образом, некоторые единицы могут попадать в выборку дважды, трижды или даже большее число раз. И при изучении выборочной совокупности они будут рассматриваться как отдельные независимые наблюдения.
Необходимо отметить, что число единиц генеральной совокупности, участвующих в отборе, при таком подходе остается постоянным. Поэтому вероятность попадания в выборку для всех единиц совокупности на протяжении всего процесса отбора также не меняется.
На практике методология повторного отбора обычно используется в тех случаях, когда объем генеральной совокупности не известен и теоретически возможно повторение единиц с уже встречавшимися значениями всех регистрируемых признаков.
При бесповторном отборе попавшая в выборку единица подвергается обследованию и в дальнейшей процедуре отбора не участвует. Такой отбор целесообразен и практически возможен в тех случаях, когда объем генеральной совокупности четко определен. Получаемые при этом результаты, как правило, являются более точными по сравнению с результатами, основанными на повторной выборке.
Необходимо отметить, что в выборочную совокупность могут отбираться не только отдельные единицы, но и группы единиц. В первом случае отбор называется индивидуальным, во втором случае -групповым.
Как уже отмечалось выше, выборочное наблюдение всегда связано с определенными ошибками получаемых характеристик. Классификация этих ошибок представлена на рис. 8.1.
Ошибки регистрации являются следствием неправильного установления значения наблюдаемого признака или неправильной записи. Они свойственны не только выборочному, но и сплошному наблюдению.
Ошибки репрезентативности обусловлены тем, что выборочная совокупность не может по всем параметрам в точности воспроизвести генеральную совокупность. Получаемые расхождения называются ошибками репрезентативности, или представительности, так как они отражают, в какой степени попавшие в выборку единицы могут представлять всю генеральную совокупность. При этом следует различать систематические и случайные ошибки репрезентативности.
Систематические ошибки репрезентативности связаны с нарушением принципов формирования выборочной совокупности. Например, вследствие каких-либо причин, связанных с организацией отбора, в выборку попали единицы, характеризующиеся несколько большими или, наоборот, несколько меньшими по сравнению с другими единицами значениями наблюдаемых признаков. В этом случае и рассчитанные выборочные характеристики будут завышенными или заниженными.
Случайные ошибки репрезентативности обусловлены действием случайных факторов, не содержащих каких-либо элементов системности в направлении воздействия на рассчитываемые выборочные характеристики. Но даже при строгом соблюдении всех принципов формирования выборочной совокупности выборочные и генеральные характеристики будут несколько различаться. Получаемые случайные ошибки могут быть статистически оценены и учтены при распространении результатов выборочного наблюдения на всю генеральную совокупность. Оценка ошибок выборочного наблюдения основана на теоремах теории вероятностей.
При дальнейшем рассмотрении теории и методов выборочного наблюдения мы будем использовать следующие общепринятые условные обозначения:
- объем (число единиц) генеральной совокупности;
- объем (число единиц) выборочной совокупности;
- генеральная средняя, т.е. среднее значение изучаемого признака по генеральной совокупности (средняя прибыль, средняя величина активов, средняя численность работников предприятия и т.п);
- выборочная средняя, т.е. среднее значение изучаемого признака по выборочной совокупности;
- численность единиц генеральной совокупности, обладающих определенным вариантом или вариантами изучаемого признака (численность городского населения, численность сельского населения, количество бракованных изделий, число нерентабельных предприятий и т.п.);
- генеральная доля, т.е. доля единиц, обладающих определенным вариантом или вариантами изучаемого признака, во всей генеральной совокупности (доля городского населения в общей численности населения, доля бракованной продукции в общем выпуске, доля нерентабельных предприятий в общей численности предприятий и т.п.); определяется как;
- численность единиц выборочной совокупности, обладающих определенным вариантом или вариантами изучаемого признака;
- выборочная доля, т.е. доля единиц, обладающих определенным вариантом или вариантами изучаемого признака, в выборочной совокупности; определяется как;
- средняя ошибка выборки;
- предельная ошибка выборки.
Ошибка выборки, или отклонение выборочной средней от средней генеральной, находится в прямой зависимости от дисперсии изучаемого признака в генеральной совокупности и в обратной зависимости от объема выборки.
Средняя ошибка выборки представляет собой среднее квадратическое отклонение выборочных средних относительно генеральной средней:
где - число всех возможных выборок данного объема из генеральной совокупности.
Между дисперсией выборочных средних и дисперсией изучаемого признака в генеральной совокупности следующая взаимосвязь:
Таким образом, среднюю ошибку выборки можно представить как
При проведении выборочного наблюдения дисперсия изучаемого признака в генеральной совокупности, как правило, неизвестна. В то же время между генеральной дисперсией и средней из всех возможных выборочных дисперсий существует следующее соотношение:
В связи с тем, что на практике в большинстве случаев из генеральной совокупности в определенный момент времени производится только одна выборка, дисперсия изучаемого признака по этой выборке и используется при расчете ошибки. Учитывая, что при достаточно большом объеме выборки отношение близко 1, формуласредней ошибки повторной выборки принимает следующий вид:
,
где -дисперсия изучаемого признака по выборочной совокупности.
При определении возможных границ значений характеристик генеральной совокупности рассчитывается предельная ошибка выборки, которая зависит от величины ее средней ошибки и уровня вероятности, с которым гарантируется, что генеральная средняя не выйдет за указанные границы. Согласно теореме А.М. Ляпунова, вероятность той или иной величины предельной ошибки, при достаточно большом объеме выборочной совокупности, подчиняется нормальному закону распределения и может быть определена на основе интеграла Лапласа:
Значения интеграла Лапласа при различных приведены в приложении 1. При обобщении результатов выборочного наблюдения наиболее часто используют следующие уровни вероятности и соответствующие им значения:
|
0,683 |
0,950 |
0,954 |
0,997 |
|
1 |
1.96 |
2 |
3 |
Например, если при определении предельной ошибки выборки мы используем , то с вероятностьюможно утверждать, что расхождение между выборочной и генеральной средними не превысит двукратной величины рассчитанной средней ошибки выборки.