Файл: биоценотическая регуляция эволюции.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 21.11.2024

Просмотров: 13

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Среди позвоночных наблюдается гораздо больше исключений из этого правила, чем среди беспозвоночных. Видимо, это связано с их зачастую сравнительно слабой связью с сообществом, о чем будет сказано ниже. Однако в ряде случаев и они оказываются не в состоянии проникнуть в чуждые сообщества. Так, на о. Рауль, несмотря на бедность аборигенной орнитофауны, интродуцированные виды птиц приурочены только к антропогенно измененным биотопам [16].

Таким образом, даже хрупкие и дефектные островные сообщества эффективно сопротивляются проникновению чуждых элементов. То же подтверждается и палеонтологическими данными, показывающими, что коллизия разнородных биот приводит к вытеснению одной биоты другой (например, в Южной Америке после установления в плиоцене сухопутного моста через Панамский перешеек), но не к механическому смешению их компонентов, хотя ограниченное взаимопроникновение их все же происходит. Внедрение извне тем менее вероятно, чем более жестко детерминированную биотическую систему представляет собой данное сообщество; в частности, в пресноводных экосистемах оно гораздо более вероятно, чем в наземных.

Итак, имеется множество аргументов в пользу весьма значительной целостности сообществ, их устойчивости и пространстве и во времени и дискретного характера их пространственных и временных границ. Это заставляет предполагать и возможность эволюции сообщества как достаточно целостной системы. Но высокая стабильность основной структуры сообщества с необходимостью требует ограничения эволюционных возможностей входящих в него популяций. В противном случае сообщество неминуемо будет разрушено хаотической «броуновской» эволюцией своих компонентов. Создается впечатление, что биоценозы диктуют допустимые границы эволюционного и экологического поведения входящих в них видов.

Вместе с тем несомненно, что уровень целостности сообщества всегда существенно уступает таковому организма (во всяком случае, эукариотического), а менее интегрированная система, вообще говоря, не может эффективно регулировать более интегрированную. Поэтому едва ли имеет место сколько-нибудь действенное прямое управление особенностями организма со стороны сообщества, хотя такие предположения иногда высказывались. Так, Красилов [4] предположил, что состояние экосистем может определять темпы мутирования. Оставляя в стороне вопрос о том, насколько существенны такие изменения для эволюционных процессов, отметим, что сколько-нибудь надежных свидетельств подобной связи нет.


Гораздо более вероятно, что ценотическая регуляция эволюционных процессов осуществляется преимущественно или даже исключительно не на организменном, а на популяционном уровне. Популяция — гораздо менее интегрированная, менее детерминированная, более стохастическая система, чем сообщество, поэтому по отношению к ней последнее способно выступать в роли весьма эффективного регулятора, подхватывающего и усиливающего одни тенденции изменений и подавляющего другие. Отметим, что колебания уровня интегрированности в ряду организм — популяция — биоценоз являются проявлением общей закономерности чередования типов организации, подмеченной А.Л. Малиновским [7].

Можно представить себе различные механизмы регулирующего воздействия ценоза на образующие его популяции. Прежде всего это минимизация вероятности фиксации возникающих генетических отклонений за счет усиления стабилизирующей составляющей отбора. Всякое сообщество обладает некоторой способностью поддерживать относительную стабильность своей внутренней среды. Для популяций эта среда является внешней, и ее стабилизация содействует их собственной стабилизации. В свою очередь, чем стабильнее входящие в сообщество популяции, тем стабильнее само сообщество. Поэтому процесс такой взаимной стабилизации оказывается самоподдерживающимся за счет положительной обратной связи.

Второй вероятный регулирующий механизм — снижение эффекта генетико-автоматических процессов. Оно достигается путем эффективной регуляции численности популяций с помощью зависящих от плотности биоценотических факторов и конкурентного деления пространства ресурсов. В естественных сообществах такие механизмы регуляции численности очень разнообразны, исключительно сложны, высокоэффективны и весьма надежны. Вопросам регуляции численности в природных сообществах посвящена обширнейшая литература. Подробнее останавливаться здесь на них нет надобности, тем более что само существование таких регулирующих механизмов не вызывает сомнений. Следует только подчеркнуть то обстоятельство, что большинство этих механизмов имеет биоценотическую природу, независимо от того, связано их действие с деятельностью хищников и паразитов или с распределением ресурсов, которое также определяется сообществом. Правда, предлагались и различные модели авторегуляции численности, основанные на результатах лабораторных экспериментов. Применимость таких моделей к природным популяциям сомнительна, особенно потому, что почти все эти эксперименты ставились на культурах видов, в природе никогда не образующих стабильных популяции, на что недавно обратил внимание II. ден Бер [21]. В них использовались вредители запасов, дрозофилы, мясные мухи, т. е. виды, связанные с эфемерными во времени и рассеянными в пространстве пищевыми ресурсами и потому адаптированные к постоянным миграциям и реколонизации островков этих ресурсов.


Если фиксацию генетического изменения все же не удается предотвратить, то сообщество тем не менее в состоянии минимизировать угрозу своей стабильности, канализируя фенотипические проявления этих изменений. Таким образом, мы переходим здесь к вопросу о регуляции направленности эволюции. Она обеспечивается плотной упаковкой видов в сообществе, благодаря которой наиболее вероятным оказывается такое направление изменений, при котором занимаемая популяцией экологическая ниша меняется минимально. Обычно такой процесс приводит к подразделению прежней ниши на две или более новых, более узких и суммарно приблизительно соответствующих исходной. Основную роль в этом процессе играет отбор ведущего типа. Вследствие подобных процессов сложность структуры сообщества в ходе его эволюции растет, причем возникает множество функциональных цепей, в общем дублирующих друг друга.

Такая структура, при которой каждая функция в сообществе исполняется не одним видом-генералистом, а параллельно целой совокупностью видов-специалистов, очень характерна для природных сообществ. За счет таких дублирующих цепей общая надежность конструкции ценоза значительно повышается. Изменение каждого отдельного вида оказывает незначительное воздействие на сообщество в целом, поскольку прежняя функция продолжает осуществляться остальными видами-дублерами. Одновременное же нарушение всех дублирующих друг друга цепей тем менее вероятно, чем их больше. Это ставит барьер на пути цепной реакции изменения популяций, сводя к минимуму влияние каждой из них на все остальные. Поэтому экспериментальные данные, полученные в смешанных лабораторных культурах немногих видов, где их взаимозависимость очень велика, плохо отражают ситуацию в природных популяциях. И в этом случае данные лабораторных экспериментов оказываются артефактами, применимость которых для трактовки природных явлений весьма и весьма сомнительна.

Обращают на себя внимание две особенности перечисленных механизмов регуляции эволюционных процессов в популяциях. Во-первых, все они требуют значительной сложности структуры сообщества, и их эффективность растет с ростом этой сложности. Эта зависимость — частный случай более общей закономерности, которая строго доказывается в теории информации. Согласно теореме 10 Шеннона, количество шума, устранимое с помощью канала коррекции, ограничено пропускной способностью этого канала. У. Р. Эшби назвал эту закономерность «законом необходимого разнообразия» и сформулировал ее следующим образом: «Только разнообразие может уничтожить разнообразие» [19, с. 294]. Разнообразию воздействий на систему она может противопоставить только разнообразие своих реакций на эти воздействия. Высокая стабильность биоценозов показывает, что они обладают достаточной сложностью организации для того, чтобы противостоять воздействиям, с которыми они сталкиваются. Второе обстоятельство па первый взгляд кажется почти тривиальным, но имеет интересные и очень важные следствия. Оно заключается в том, что все способы регуляции эволюции вероятностны и не абсолютно надежны. Отсюда следует, что при достаточном числе испытаний должно наступить такое, при котором эти механизмы не сработают. Иными словами, даже если абиотические условия не выходят за допустимые для данного сообщества пределы и сообщество не испытывает никаких разрушительных внешних воздействий, оно все же рано или поздно неминуемо будет разрушено вследствие эволюции своих компонентов, несмотря на все совершенство механизмов, репрессирующих эту эволюцию. Такое разрушение сообщества — лишь вопрос времени.


Очевидно, что если когерентность эволюции поддерживается сообществом с помощью перечисленных механизмов, то деструкция сообщества приводит к утрате когерентности. А это означает, что в рамках предлагаемой здесь системы взглядов чередование этапов когерентности и некогерентного филогенеза оказывается естественным свойством органической эволюции. Это не означает, что внешние воздействия не могут нарушить когерентность филогенеза. Утрата когерентности может быть вызвана такими событиями, как изменения климата, поскольку данная структура сообщества рассчитана на определенный уровень поступления энергии извне и на определенную ритмику этого поступления. Но такие воздействия не являются необходимым условием утраты когерентности. Независимо от того, внешними пли внутренними воздействиями будет разрушено сообщество, эффект такого разрушения будет одинаковым.

Снятие или ослабление ценотического контроля предоставляет значительную свободу для эволюционных изменений в популяциях. Вероятность того, что возникающие изменения будут элиминироваться отбором, снижается, поскольку стабилизирующий отбор слабеет со снижением стабильности сообщества. Более того, в ряде случаев должен наблюдаться интенсивный отбор против прежней нормы. Роль генетико-автоматических процессов увеличивается, поскольку усиливаются колебания численности. Уровень векторизованности изменений снижается, поскольку упаковка видов становится более рыхлой. Изменения в популяциях приобретают характер цепной реакции, поскольку многие функциональные цепи разрушаются или модифицируются и это вызывает новые изменения в других частях экосистемы, зависящих от функционирования этих цепей. Предельные возможности некогерентной эволюции определяются уже не прессом надпопуляционных систем, а популяционно-генетическими механизмами, которые в этих условиях действительно становятся решающими.

В результате утраты когерентности в противовес лавинообразному вымиранию множества популяций, образовывавших прежнее сообщество, начинается процесс интенсивного видообразования в выживших популяциях. Этот процесс также приобретает лавинный характер. Даже если доля существенно новых признаков в общей массе изменений не меняется, само число изменений в единицу времени настолько возрастает, что радикальные новообразования появляются гораздо чаще, чем при когерентном ходе эволюции. Но, вероятно, увеличивается и доля крупных преобразований. Это связано со стремительным ростом численности относительно немногих выживших популяций в условиях резкого ослабления межпопуляционной конкуренции и пресса естественных врагов. Такой рост численности быстро приводит к ожесточенной внутрипопуляционной конкуренции за пищу, пространство и т. д. и к усилению дизруптивной компоненты отбора, стремящейся вывести отдельные части популяции за пределы используемой ниши, а обилие незанятых ниш облегчает этот процесс.


Совокупность всех этих явлений приводят к быстрому формированию множества новых таксонов с существенно новыми свойствами. Взаимодействие популяций вновь возникающих видов на первых порах весьма хаотично и определяется множеством случайных факторов, например очередностью занятия той или иной ниши. Поэтому свойства вновь возникающих таксонов непредсказуемы. Постепенно, по мере усиливающейся диверсификации выживших популяций, все большее число новых ниш заполняется, складывающаяся экологическая структура становится все более сложной, а соответственно и взаимодействия эволюирующих популяций становятся все более упорядоченными и закономерными. Складывается структура нового сообщества, а параллельно с формированием, усложнением и стабилизацией новой экологической структуры происходит прогрессирующее усиление когерентности эволюционных процессов в популяциях.

Таким образом, восстановление когерентности эволюции происходит автоматически, поскольку некогеректный филогенез компенсирует потерю сложности и стабильности сообщества и в геологически короткие сроки формирует новые биоценотические системы. Вспышки некогерентного филогенеза соответствуют моментам нарушения экологического равновесии - экологическим кризисам. Периоды когерентного филогенеза соответствуют периодам существования длительно стабильных полихронных типов сообществ. Чередование некогерентного и когерентного филогенеза есть следствие самого существования биоценотических систем и является имманентным свойством органической эволюции. Внешние воздействия на биоценозы могут самое большее увеличивать частоту проявлений некогерентности, но отнюдь не являются их обязательным условием. Нарушения когерентности могут иметь больший или меньший масштаб. Наиболее сильные отклонения от когерентности филогенеза происходят, разумеется, тогда, когда вся основная структура сообщества охвачена процессами деструкции. По-видимому, это имеет место в случае смены состава растений, характеризующих ранние стадии сукцессии, поскольку при этом одновременно разрушается вся сукцессионная и трофическая структура прежнего сообщества [2]. Изменения среди крупных консументов (которыми на суше всегда оказываются крупные позвоночные) обычно наименее чувствительны для экосистемы в целом. Воздействие крупных позвоночных приводит, пользуясь терминологией Разумовского [11], к широкому распространению рецидивных и ретардационных субклимаксов, но зачастую не затрагивает саму структуру сукцессионной системы, лишь исключительно редко эта структура оказывается существенно измененной [2]. Именно потому эволюция крупных позвоночных, сравнительно автономная от сообщества, имеет в общем менее когерентный характер, чем у подавляющего большинства других организмов; именно этим объясняются ее аномально высокие скорости и сравнительно высокая частота существенных эволюционных приобретений.