Добавлен: 01.04.2023
Просмотров: 184
Скачиваний: 4
2.3 Вторая теорема Шеннона.
Отношение пропускной способности канала связи к скорости неискаженной передачи символов алфавита передаваемого сообщения должно быть больше или равно энтропии передачи одного символа.
Вторая теорема Шеннона гласит, что при наличии помех в канале всегда можно найти такую систему кодирования, при которой сообщения будут переданы с заданной достоверностью. При наличии ограничения пропускная способность канала должна превышать производительность источника сообщений. Вторая теорема Шеннона устанавливает принципы помехоустойчивого кодирования. Для дискретного канала с помехами теорема утверждает, что, если скорость создания сообщений меньше или равна пропускной способности канала, то существует код, обеспечивающий передачу со сколь угодно малой частотой ошибок.
Доказательство теоремы основывается на следующих рассуждениях. Первоначально последовательность X={xi} кодируется символами из В так, что достигается максимальная пропускная способность (канал не имеет помех). Затем в последовательность из В длины n вводится r символов по каналу передается новая последовательность из n + r символов. Число возможных последовательностей длины n + r больше числа возможных последовательностей длины n. Множество всех последовательностей длины n + r может быть разбито на n подмножеств, каждому из которых сопоставлена одна из последовательностей длины n. При наличии помехи на последовательность из n + r выводит ее из соответствующего подмножества с вероятностью сколь угодно малой.
Теорема позволяет определять на приемной стороне канала, какому подмножеству принадлежит искаженная помехами принятая последовательность n + r, и тем самым восстановить исходную последовательность длины n.
Эта теорема не дает конкретного метода построения кода, но указывает на пределы достижимого в области помехоустойчивого кодирования, стимулирует поиск новых путей решения этой проблемы.
Заключение
Информацию классифицируют разными способами, и разные науки это делают по-разному. Например, в философии различают информацию объективную и субъективную. Объективная информация отражает явления природы и человеческого общества. Субъективная информация создается людьми и отражает их взгляд на объективные явления.
В информатике отдельно рассматривается аналоговая информация и цифровая. Это важно, поскольку человек благодаря своим органам чувств, привык иметь дело с аналоговой информацией, а вычислительная техника, наоборот, в основном, работает с цифровой информацией.
Человек воспринимает информацию с помощью органов чувств. Свет, звук, тепло - это энергетические сигналы, а вкус и запах - это результат воздействия химических соединений, в основе которого тоже энергетическая природа. Человек испытывает энергетические воздействия непрерывно и может никогда не встретиться с одной и той же их комбинацией дважды. Нет двух одинаковых зеленых листьев на одном дереве и двух абсолютно одинаковых звуков - это информация аналоговая. Если же разным цветам дать номера, а разным звукам - ноты, то аналоговую информацию можно превратить в цифровую.
Кодирование информации. Кодирование информации - это процесс формирования определенного представления информации.
В более узком смысле под термином «кодирование» часто понимают переход от одной формы представления информации к другой, более удобной для хранения, передачи или обработки.
Компьютер может обрабатывать только информацию, представленную в числовой форме. Вся другая информация (звуки, изображения, показания приборов и т. д.) для обработки на компьютере должна быть преобразована в числовую форму. Например, чтобы перевести в числовую форму музыкальный звук, можно через небольшие промежутки времени измерять интенсивность звука на определенных частотах, представляя результаты каждого измерения в числовой форме. С помощью компьютерных программ можно преобразовывать полученную информацию, например «наложить» друг на друга звуки от разных источников.
Аналогично на компьютере можно обрабатывать текстовую информацию. При вводе в компьютер каждая буква кодируется определенным числом, а при выводе на внешние устройства (экран или печать) для восприятия человеком по этим числам строятся изображения букв. Соответствие между набором букв и числами называется кодировкой символов.
Как правило, все числа в компьютере представляются с помощью нулей и единиц (а не десяти цифр, как это привычно для людей). Иными словами, компьютеры обычно работают в двоичной системе счисления, поскольку при этом устройства для их обработки получаются значительно более простыми.