ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 27.04.2019
Просмотров: 325
Скачиваний: 4
ГЛАВА ШЕСТАЯ. Потери и КПД
В электромеханических преобразователях (электрических машинах) электромеханическое преобразование энергии происходит с обязательным преобразованием части электрической энергии (режим двигателя) или механической (режим генератора) — в тепло [6]. Так как эта часть энергии «теряется» в процессе преобразования, ее принято называть потерями, а отношение полезной работы к затрачиваемой — коэффициентом полезного действия КПД.
6.1. КЛАССИФИКАЦИЯ ПОТЕРЬ
КПД — основной показатель энергетических характеристик электрических машин и его расчет имеет важное значение при их проектировании. Чтобы определить КПД машины, надо, по возможности, точно рассчитать потери. Потери в отдельных ее частях необходимо также знать для определения в них температуры, что влияет на расчет размеров и геометрию основных конструкционных узлов электрических машин. Потери в электрических машинах делятся на основные и добавочные.
К основным потерям относятся электрические потери (потери в меди), магнитные (потери в стали) и механические потери. Электрические потери сосредоточены в обмотках электрических машин переменного тока, а в машинах постоянного тока к ним добавляются еще и потери на коллекторе. Магнитные потери возникают там, где замыкается переменный магнитный поток. Механические потери связаны с потерями в подшипниках, с трением вращающихся частей машины о воздух и в скользящих контактах. К механическим потерям относятся также вентиляционные потери, которые расходуются па охлаждение машины.
К добавочным потерям относятся потери, которые не были учтены при расчете основных потерь.
Магнитные потери и механические потери в большинстве машин не зависят от нагрузки и они являются постоянными потерями. Обычно это потери холостого хода. Электрические потери зависят от нагрузки, поэтому их относят к переменным потерям [6].
Расчету потерь при проектировании уделяется большое внимание, так как от этого зависят основные размеры и геометрия электрической машины.
6.2. ЭЛЕКТРИЧЕСКИЕ ПОТЕРИ
Электрические потери возникают в проводниках обмоток, соединительных шинах и проводах, в переходных контактах щетки — коллектор или щетки — контактные кольца.
Потери в обмотках, соединительных шинах и проводах. Электрические потери Рэ, Вт, в обмотках и всех токоведущих частях электрической машины рассчитывают по формуле
Рэ = , (6.1)
где rvi — сопротивление данной обмотки или i-го участка токопровода, по которому протекает ток Ii, рассчитанное при необходимости с учетом влияния эффекта вытеснения тока, Ом.
Для расчета потерь сопротивление rv должно быть приведено к расчетной температуре: для обмоток с изоляцией классов нагревостойкости А, Е и В — 75° С, с изоляцией класса F или Н — 115° С (соответственно r75° и r115°). Если по обмотке протекает постоянный ток, то для расчета электрических потерь часто используют выражение
Pэ = UI, (6.2)
где I— ток в обмотке, A; U— напряжение на концах обмотки, В.
Электрические потери рассчитывают отдельно для каждой из обмоток — обмотки фазы машины переменного тока, обмотки якоря, возбуждения и т. п., так как эти данные используют в дальнейшем для тепловых расчетов электрических машин.
Обычно электрические потери в обмотках возбуждения синхронных машин и в обмотках параллельного или независимого возбуждения машин постоянного тока выделяют из общей суммы электрических потерь и относят к потерям на возбуждение. Для синхронных машин потери в обмотках возбуждения учитывают в тепловых расчетах, а при определении КПД к потерям на возбуждение относят мощность, потребляемую возбудителем, если он расположен на одном валу с ротором или приводится во вращение от вала ротора.
При определении КПД машин постоянного тока учитывают также электрические потери в регулировочных реостатах. На тепловое состояние машин эти потери влияния не оказывают, так как реостаты располагаются отдельно от машин.
В некоторых обмотках на их различных участках протекают разные токи. В этом случае сопротивление одного из участков приводят к току другого. Так, при расчете сопротивления фазы обмотки короткозамкнутого ротора асинхронной машины сопротивление замыкающих колец приводит к току стержней обмотки.
Потери в переходных контактах. Электрические потери в переходных контактах щетки -- коллектор или щетки — контактные кольца зависят от тока, протекающего через контакт Iк.к, А, и падения напряжения под щетками Uщ, В:
Рэ.щ = k ΔUщ Ik.к. (6.3)
В машинах постоянного тока и синхронных коэффициент k = 2, так как ток проходит через два переходных контакта: под положительной и отрицательной щетками. В асинхронных машинах с фазным ротором k = m, где m — число фаз обмотки.
Потери в переходных контактах нельзя рассчитать точно, так как падение напряжения под щетками непостоянно и зависит от режима работы, состояния трущихся поверхностей, удельного давления щеток на коллектор или контактные кольца и от ряда других факторов, изменяющихся во время эксплуатации машины. В расчетах используют значение ΔUщ, взятое из технической характеристики конкретной марки щеток, которое принимают постоянным, так как Рэ.щ составляют лишь несколько процентов от общей суммы потерь в машине, погрешность расчета при этом незначительна.
6.3. МАГНИТНЫЕ ПОТЕРИ
Магнитные потери, или, как их чаще называют, потери в стали (Рст), возникают в участках магнитопровода с переменным магнитным потоком: в статорах асинхронных и синхронных машин и якорях машин постоянного тока. В роторах синхронных машин, полюсах и станине машин постоянного тока поток постоянный и основные потери в стали отсутствуют. В роторах асинхронных машин частота тока и потока в номинальном режиме небольшая (f2 = sном f ), поэтому потерями в стали ротора пренебрегают [5].
Основные потери в стали состоят из потерь на гистерезис и потерь на вихревые токи. Они зависят от марки стали, толщины листов магнитопровода, частоты перемагничивания и индукции. На них оказывают влияние также различные технологические факторы. В процессе штамповки листов магнитопровода образуется наклеп, который изменяет структуру стали по кромкам зубцов и увеличивает потери на гистерезис. Потери на вихревые токи возрастают в результате замыканий части листов магнитопровода между собой, возникающих из-за заусенцев, которые образуются при опиловке пазов, при забивке пазовых клиньев, из-за чрезмерной опрессовки магнитопровода и ряда других причин.
Точных аналитических формул для расчета основных потерь в стали, учитывающих влияние приведенных выше факторов, не существует. Потери в стали рассчитывают по формулам, основанным на результатах многолетних теоретических и экспериментальных исследований.
Основные потери в стали определяют как сумму потерь в зубцах и в ярме магнитопровода:
(6.4)
где kдi, — коэффициент, учитывающий увеличение потерь в стали зубцов или ярма магнитопровода по технологическим причинам; Р1/50 — удельные потери в стали при частоте перемагничивания 50 Гц и магнитной индукции 1 Тл, Вт/кг; f— частота перемагничивания, Гц. Для машин переменного тока f равна частоте питающей сети; для расчета потерь в стали якоря машин постоянного тока f = рn/60; Bi — индукция в зубцах или ярме магнитопровода, Тл; mi — масса зубцов или ярма магнитопровода, кг; β — показатель степени, зависящий от марки стали и толщины листов магнитопровода. В большинстве расчетов β можно принять равным 1,3.
Значения P1/50 и β приводятся в технических характеристиках сталей; данные по выбору kд и расчету массы стали зубцов и ярма приведены в главах учебника, посвященных проектированию конкретных видов машин.
6.4. МЕХАНИЧЕСКИЕ И ВЕНТИЛЯЦИОННЫЕ ПОТЕРИ
Механические потери в электрических машинах состоят из потерь на трение в подшипниках, на трение вращающихся частей машины о воздух или газ и потерь на трение в скользящих контактах щетки — коллектор или щетки — контактные кольца. К вентиляционным потерям относят затраты мощности на циркуляцию охлаждающего воздуха или газа.
В машинах с самовентиляцией на вентиляционные потери расходуется часть подводимой к машине мощности. В машинах с принудительной вентиляцией или с жидкостным охлаждением для циркуляции охлаждающего агента — воздуха, газа или жидкости — устанавливают вентиляторы или компрессоры с независимым приводом. Потребляемая их двигателями мощность учитывается при расчете КПД основной машины как потери на вентиляцию.
Расчетные формулы, позволяющие найти каждую из составляющих этих видов потерь, основаны на экспериментальных данных и отражают зависимость потерь от конструкции машины, ее размеров, частоты вращения и от ряда других факторов. При проектировании машин, конструкция которых несущественно отличается от серийных, в расчете можно использовать эмпирические формулы, дающие непосредственно сумму вентиляционных и механических потерь (за исключением потерь на трение в скользящих контактах).
Расчет механических и вентиляционных потерь Рмех можно выполнить лишь после завершения проектирования и определения размеров всех деталей машины. Во время учебного проектирования при разработке конструкции машины следует иметь в виду качественную зависимость этого вида потерь от размерных соотношений машины. Потери на трение и вентиляцию резко увеличиваются в машинах с большим диаметром ротора и большой частотой вращения. Так, в большинстве машин эти потери пропорциональны квадрату частоты вращения и квадрату наружного диаметра статора.
Так как формулы для расчета механических потерь выведены для конкретных типов и конструктивного исполнения машин, то они приводятся в соответствующих главах учебника. Там же приведены формулы для расчета потерь на трение в скользящих контактах.
6.5. ДОБАВОЧНЫЕ ПОТЕРИ
Добавочные потери, как правило, меньше основных потерь, рассмотренных в предыдущих параграфах. Некоторые виды добавочных потерь возникают при холостом ходе и не изменяются при нагрузке машины, другие появляются только с увеличением тока нагрузки. В зависимости от этого первый вид потерь называют добавочными потерями холостого хода, а второй — добавочными потерями при нагрузке.
К добавочным потерям холостого хода относят поверхностные Рпов и пульсационные потери Рпул:
Рст.доб = Рпов + Рпул (6.5)
Поверхностные потери возникают из-за пульсаций индукции в воздушном зазоре. При работе машины индукция в каждой отдельно взятой точке, расположенной на одной из поверхностей магнитопровода, обращенных к зазору, будет изменяться от наибольшего значения (когда против нее на противоположной стороне зазора находится коронка зубца) до наименьшего (когда на другой стороне располагается паз). Частота таких пульсаций индукции определяется числом зубцов и частотой вращения, т. е. зубцовой частотой, Гц:
fz = nZ/60.
Вызванная этими пульсациями ЭДС создает в тонком поверхностном слое головок зубцов и полюсных наконечников вихревые токи, потери от которых и называют поверхностными.
Таким образом, наличие зубцов на статоре определяет возникновение поверхностных потерь в роторе, и, наоборот, зубцы ротора вызывают поверхностные потери на статоре. Поверхностные потери возникают во всех машинах, имеющих зубчатую поверхность на одной или на двух сторонах воздушного зазора. Эти потери имеют место в статорах и роторах асинхронных машин и на поверхности полюсных наконечников синхронных машин и машин постоянного тока.
Для расчета Рпов предварительно находят амплитуду пульсаций индукции в воздушном зазоре В0 в зависимости от индукции Вδ и размерных соотношений зазора — отношения ширины раскрытия паза к зазору bш/δ. Среднее значение удельных поверхностных потерь Рпов, т. е. отнесенных к единице площади поверхности магнитопровода статора или ротора, обращенной к воздушному зазору,
Р'пов1 = k0 (Z2n/ 10000)1,5(103 B0tz2)2 ; (6.6)
Р'пов2 = k0 (Z2n/ 10000)1,5(103 B0tz1)2 , (6.7)
где коэффициент k0 определяет влияние на потери толщины листов магнитопровода, марки стали и способа обработки поверхности; Z1 и Z2 — числа зубцов статора и ротора; n — частота вращения ротора, об/мин; tz1 и tz2 — зубцовые деления статора и ротора, м.
Полные поверхностные потери Рпов, Вт, получают умножением Р'пов на площадь всей рассматриваемой поверхности статора или ротора — головок зубцов или полюсных наконечников.
Пульсационные потери Рпул возникают в машинах, имеющих зубцы и на роторе и на статоре, например, в асинхронных машинах. Они обусловлены пульсациями потока в зубцах, что приводит к появлению вихревых токов в стали зубцов. Частота пульсаций потока и индукции в зубцах статора происходит с зубцовой частотой ротора, а частота пульсаций в зубцах ротора — с зубцовой частотой статора. Амплитуда пульсаций Впул зависит от среднего значения индукции в зубцах и размерных соотношений зубцовых зон. Потери Рпул, Вт, определяют раздельно для зубцов статора и ротора по следующим формулам:
Рпул1 = (0,09...0,11)(Z2n/ 1000)2 B2пул1 mz1; (6.8)
Рпул1 = (0,09...0,11)(Z1n/ 1000)2 B2пул2 mz2, (6.9)
где Z1 и Z2 — числа пазов статора и ротора; Впул1 и Впул2 — амплитуда пульсаций индукции в зубцах статора и ротора, Тл; mz1 и mz2 — массы зубцов статора и ротора, кг.
Поверхностные и пульсационные потери возникают во всех машинах, имеющих пазы, открытые в воздушный зазор, хотя бы на одной из его поверхностей. При закрытых пазах в магнитопроводе, расположенном на противоположной им стороне зазора, поверхностные и пульсационные потери не возникают. Например, эти потери отсутствуют на поверхности и в зубцах статора асинхронного двигателя, если его ротор выполнен с закрытыми пазами.
Относительная величина Рпов, и Рпул в общей сумме потерь резко возрастает в машинах с большим числом пазов, с большой частотой вращения, а также при увеличении ширины шлица паза и уменьшении воздушного зазора. Это объясняется тем, что в первом случае возрастает частота, а во втором — амплитуда пульсаций индукции в воздушном зазоре и в зубцах магнитопровода. В двухполюсных асинхронных двигателях чрезмерное уменьшение воздушного зазора приводит к значительному увеличению потерь Рпов и Рпул, что может служить причиной возрастания суммарных потерь и уменьшения КПД двигателя.
Добавочные потери при нагрузке возникают как в проводниках обмоток, так и в стали на отдельных участках магнитопровода. Ток нагрузки создает потоки рассеяния, сцепленные с проводниками обмоток. В результате этого в проводниках наводятся вихревые токи, вызывающие добавочные потери, не учтенные ранее в расчете. В машинах постоянного тока увеличение потерь при нагрузке связано также с коммутационным процессом, при котором токи в секциях изменяют свое направление. Поля, созданные высшими гармониками МДС обмоток, и зубцовые гармоники поля с ростом нагрузки машины увеличивают поверхностные и пульсационные потери. В машинах постоянного тока увеличение добавочных потерь в стали с ростом нагрузки связано также с искажением магнитного поля под действием поперечной реакции якоря.