Файл: Различные материалы по ФЗР.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 07.05.2019

Просмотров: 794

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Броже́ние (тж. сбра́живание, фермента́ция) — «это такой метаболический процесс, при котором регенерируется АТФ, а продукты расщепления органического субстрата могут служить одновременно и донорами, и акцепторами водорода»[1]. Брожение — это анаэробный (происходящий без участия кислорода) метаболический распад молекул питательных веществ, например глюкозы. По выражению Луи Пастера, «брожение — это жизнь без кислорода». Большинство типов брожения осуществляют микроорганизмы — облигатные или факультативные анаэробы.


Брожение не высвобождает всю имеющуюся в молекуле энергию, поэтому промежуточные продукты брожения могут использоваться в ходе клеточного дыхания.

Термин брожение также используется в более широком смысле, для обозначения бурного роста микроорганизмов в соответствующей среде. При использовании в этом смысле не делается различия между аэробным и анаэробным метаболизмом.


Брожение часто используется для приготовления или сохранения пищи. Говоря о брожении, обычно имеют в виду брожение сахара (превращение его в спирт) с использованием дрожжей, но, к примеру, при производстве йогурта используются другие виды брожения.


Использование брожения человеком обычно предполагает применение определенных видов и штаммов микроорганизмов. Вина иногда улучшают с использованием процесса взаимного брожения.

]

История изучения


Лавуазье в конце XVIII века установил, что в ходе спиртового брожения сахар разлагается на спирт и углекислый газ. Вскоре после этого Гей-Люссак показал, что суммарная масса спирта и углекислого газа равна массе расщепленного сахара.


В 30-е годы XIX века Ш. Каньяр де Латур и Теодор Шванн окончательно установили, что дрожжи (открытые Антони ван Левенгуком) — это живые клетки, и высказали идею о том, что брожение — результат их жизнедеятельности. Эта идея была отвергнута ведущими химиками того времени — Либихом, Берцелиусом и др.


Брожение было подробно изучено во второй половине XIX века Луи Пастером. Пастер убедительно доказал, вопреки господствовавшей тогда точке зрения, что брожение — процесс не чисто химический и происходит только в присутствии живых клеток микроорганизмов.


В 1893—1898 гг. Э. Бухнер показал, что брожение может происходить не только в клетках дрожжей, но и в бесклеточном дрожжевом экстракте (Нобелевская премия по химии 1907 г.). Благодаря его работам стало ясно, что многие биохимические реакции можно осуществить in vitro.

Биохимия


Брожение — это процесс, важный в анаэробных условиях, в отсутствие окислительного фосфорилирования. В ходе брожения, как и в ходе гликолиза, образуется АТФ. Во время брожения пируват преобразуется в различные вещества.


Хотя на последнем этапе брожения (превращения пирувата в конечные продукты брожения) не освобождается энергия, он крайне важен для анаэробной клетки, поскольку на этом этапе регенерируется никотинамидадениндинуклеотид (NAD+), который требуется для гликолиза. Это важно для нормальной жизнедеятельности клетки, поскольку гликолиз для многих организмов — единственный источник АТФ в анаэробных условиях.



В ходе брожения происходит частичное окисление субстратов, при котором водород переносится на NAD+ (никотинамидадениндинуклеотид). В ходе других этапов брожения его промежуточные продукты служат акцепторами водорода, входящего в состав NADH; в ходе регенерации NAD+ они восстанавливаются, а продукты восстановления выводятся из клетки.


Конечные продукты брожения содержат химическую энергию (они не полностью окислены), но считаются отходами, поскольку не могут быть подвергнуты дальнейшему метаболизму в отсутствие кислорода (или других высоко-окисленных акцепторов электронов) и часто выводятся из клетки. Следствием этого является тот факт, что получение АТФ брожением менее эффективно, чем путём окислительного фосфорилирования, когда пируват полностью окисляется до двуокиси углерода. В ходе разных типов брожения на одну молекулу глюкозы получается от двух до четырех молекул АТФ (ср. около 36 молекул путём аэробного дыхания). Однако даже у позвоночных брожение (анаэробное окисление глюкозы) используется как эффективный способ получения энергии во время коротких периодов интенсивной мышечной работы, когда перенос кислорода к мышцам недостаточен для поддержания аэробного метаболизма. Брожение у позвоночных помогает во время коротких периодов интенсивной работы, но не предназначено для длительного использования. Например, у людей гликолиз с образованием молочной кислоты дает энергию на период от 30 секунд до 2 минут. Скорость генерации АТФ примерно в 100 раз больше, чем при окислительном фосфорилировании. Уровень pH в цитоплазме быстро падает, когда в мышце накапливается молочная кислота, в конечном итоге ингибируя ферменты, вовлеченные в процесс гликолиза.

[править]

Продукты реакции брожения


Продукты брожения — это по сути отходы, получившиеся во время превращения пирувата с целью регенерации NAD+ в отсутствие кислорода. Стандартные примеры продуктов брожения — этанол (питьевой спирт), молочная кислота, водород и углекислый газ. Однако продукты брожения могут быть более экзотическими, такими как масляная кислота, ацетон, пропионовая кислота, 2,3-бутандиол и др.

[править]

Основные типы брожения

Спиртовое брожение [2](осуществляется дрожжами и некоторыми видами бактерий), в ходе него пируват расщепляется на этанол и двуокись углерода. Из одной молекулы глюкозы в результате получается две молекулы питьевого спирта (этанола) и две молекулы углекислого газа. Этот вид брожения очень важен в производстве хлеба, пивоварении, виноделии и винокурении[3]. Если в закваске высока концентрация пектина, может также производиться небольшое количество метанола. Обычно используется только один из продуктов; в производстве хлеба алкоголь улетучивается при выпечке, а в производстве алкоголя двуокись углерода обычно уходит в атмосферу, хотя в последнее время её стараются утилизировать.


Молочнокислое брожение, в ходе которого пируват восстанавливается до молочной кислоты, осуществляют молочнокислые бактерии и другие организмы. При сбраживании молока молочнокислые бактерии преобразуют лактозу в молочную кислоту, превращая молоко в кисломолочные продукты (йогурт, простокваша и др.); молочная кислота придаёт этим продуктам кисловатый вкус.


Молочнокислое брожение происходит также в мышцах животных, когда потребность в энергии выше, чем обеспечиваемая дыханием, и кровь не успевает доставлять кислород.


Обжигающие ощущения в мышцах во время тяжелых физических упражнений соотносятся с получением молочной кислоты и сдвигом к анаэробному гликолизу, поскольку кислород преобразуется в двуокись углерода аэробным гликолизом быстрее, чем организм восполняет запас кислорода; а болезненность в мышцах после физических упражнений вызвана микротравмами мышечных волокон. Организм переходит к этому менее эффективному, но более скоростному методу производства АТФ в условиях недостатка кислорода. Затем печень избавляется от излишнего лактата, преобразуя его обратно в важное промежуточное звено гликолиза — пируват.


Считается, что анаэробный гликолиз был первым источником энергии для общих предков всех живых организмов до того, как концентрация кислорода в атмосфере стала достаточно высокой, и поэтому эта форма генерации энергии в клетках — более древняя. За очень редкими исключениями она существует и у всех ныне живущих клеток.

Уксуснокислое брожение осуществляют многие бактерии. Уксус (уксусная кислота) — прямой результат бактериальной ферментации. При мариновании продуктов уксусная кислота предохраняет пищу от болезнетворных и вызывающих гниение бактерий.

[править]

Использование человеком


Основная польза от брожения — это превращение, например, сока в вино, зерна и других исходных продуктов в пиво, а углеводов в двуокись углерода при приготовлении хлебного теста. Широко используется человеком также молочнокислое брожение для приготовления кисломолочных продуктов, квашения овощей и приготовления силоса.


Поскольку фрукты сбраживаются в своем натуральном состоянии, брожение как процесс изменения пищевых продуктов появилось раньше человеческой истории. Однако люди с некоторых пор научились контролировать процесс брожения. Есть веские доказательства того, что люди сбраживали напитки в Вавилоне около 5000 г. до н. э., в Древнем Египте около 3000 г. до н. э., в доиспанской Мексике около 2000 г. до н. э. и в Судане около 1500 г. до н. э. Также существуют данные о дрожжевом хлебе в Древнем Египте около 1500 г. до н. э. и сбраживании молока в Вавилоне около 3000 г. до н. э. Китайцы, вероятно, первыми стали сбраживать овощи.


По Штейнкраузу (Steinkraus; 1995), брожение пищи выполняет пять главных задач:

Обогащение видов пищи разнообразием вкусов, ароматов и текстуры


Сохранение существенного количества пищи с помощью молочной кислоты, алкоголя, уксусной кислоты и щелочного брожения

Биологическое обогащение пищи протеинами, важными аминокислотами, важными жирными кислотами и витаминами

Детоксификация в процессе брожения пищи

Уменьшение времени и затрат на приготовление пищи


У брожения есть несколько преимуществ, важных для приготовления или сохранения пищи. В процессе брожения можно получать важные питательные вещества или устранять непитательные. С помощью брожения пищу можно дольше сохранять, поскольку брожение может создать условия, неподходящие для нежелательных микроорганизмов. Например, при мариновании кислота, получаемая из доминирующей бактерии, препятствует росту всех других микроорганизмов.

[править]

Пищевые продукты, получаемые с использованием брожения (по регионам)

По всему миру: спирт, вино, уксус, сметана, йогурт, пиво, квас

Азия

Индия: achar, gundruk, Indian pickles, Idli

Юго-Восточная Азия: asinan, bai-ming, belacan, burong mangga, dalok, jeruk, кимчи, рыбный соус, leppet-so, miang, мисо, nata de coco, nata de pina, naw-mai-dong, pak-siam-dong, paw-tsaynob в снегу (雪裡蕻), саке (ja:日本酒), seokbakji, соевый соус, сычуаньская капуста (四川泡菜), tai-tan tsoi, takana, takuan, totkal kimchi, tsa tzai, tsukemono (ja:漬物), wasabi-zuke (ja:山葵漬け), yen tsai (醃菜), пахучий соевый творог, некоторые виды чая

Центральная Азия: кумыс (кобылье молоко), кефир, шубат (верблюжье молоко)

Африка: семена гибискуса, острый перцовый соус, lamoun makbouss, mauoloh, msir, mslalla, oilseed, ogili, ogiri, Garri

Америка: сыр, маринованные овощи, квашеная капуста, семена люпина, семена масличных культур, шоколад, ваниль, квашеная рыба, рыбьи головы, морж, тюлений жир, птица (в эскимосской кухне)

Ближний Восток: kushuk, маринованые лимоны, mekhalel, торси, tursu

Европа: сыр, квашеная капуста, кисломолочные продукты, такие как творог, кефир и простокваша, квашеная рыба, сюрстрёмминг,

Россия: простокваша, квас, квашеная капуста, мочёные яблоки, сметана, бочковые солёные огурцы, брага



Иммунитет растений

Материал из Википедии — свободной энциклопедии


Иммуните́т расте́ний (фитоиммунитет) — неспецифическая резистентность растений по отношению к патогенам, а также насекомым. Фитоиммунитет обеспечивается множеством механизмов: выработкой низкомолекулярных фитонцидов, обладающих антибактериальными и фунгицидными свойствами, рецепторами распознавания специфических белковых и углеводных последовательностей (англ. pattern recognition receptors),[1][2] характерных для многих возбудителей, и системой подавления экспрессии генов при помощи РНК (RNA silencing)[3] в качестве противовирусной защиты.


В отличие от животных, у растений нет подвижных клеток, которые участвуют в иммунной реакции. Каждая растительная клетка обладает способностью к защите от патогенов. Многие патогены способны подавлять рост растений и процесс их размножения. Иммунный ответ растений состоит из двух видов реакций. Первая реакция состоит в распознании молекул, типичных для микробов, включая невредные микробы. Вторая реакция состоит в ответе на патогенные факторы микробов. Исследование иммунных механизмов реакций помогает изучать эволюцию иммунной системы и выводить сорта сельскохозяйственных культур, более устойчивые к неблагоприятным факторам внешней среды.




Чайлахян Михаил Христофорович



Чайлахян Михаил Христофорович [р. 8(21).3.1902, г. Нахичевань-на-Дону, ныне в черте г. Ростова-на-Дону], советский физиолог растений, академик АН СССР (1968), академик АН Армянской ССР (1971), заслуженный деятель науки Армянской ССР (1967). Окончил Ереванский университет (1926). С 1935 заведующий лабораторией роста и развития в Институте физиологии растений им. К. А. Тимирязева АН СССР. В 1941—48 заведующий кафедрой физиологии и анатомии растений Ереванского университета (с 1943 профессор); одновременно в 1941—46 заведующий кафедрой физиологии растений и микробиологии Армянского с.-х. института. Основные труды по изучению роста и развития растений, закономерностям их онтогенеза, по фотопериодической и температурной регуляции цветения. Основоположник гормональной теории развития растений. Разработал методы применения фитогормонов для регуляции роста и цветения растений, в том числе стимуляторов роста — гиббереллинов для повышения урожайности с.-х. культур, и тормозителей роста — ретардантов для предупреждения полегания зерновых хлебов. Иностранный член германской Академии естествоиспытателей "Леопольдина" (1969). Награжден 2 орденами Ленина, 2 другими орденами, а также медалями.


Соч.: Гормональная теория развития растений, М.—Л., 1937; Физиологическая природа процессов яровизации растений, "Успехи современной биологии", 1942, т. 15, в. 1; Основные закономерности онтогенеза высших растений, М., 1958; Факторы генеративного развития растений, М., 1964; Гормональная регуляция цветения растений различных фотопериодических групп, "Физиология растений", 1971, т. 18, в. 2; Автономный и индуцированный механизмы регуляции цветения растений, там же, 1975, т. 22, в. 6.



Фотопериодизм


В 1920 г. американские физиологи У.У. Гарнер и Г.А. Аллард установили, что есть растения, которые переходят к цветению только в условиях короткого дня, т. е. когда день короче ночи. К таким растениям относятся табак сорта Мериленд Мамонт, соя, перилла, хризантема, просо и др. В условиях, когда светлый период суток превышает темный (длинный день), эти растения не образуют репродуктивных органов. В дальнейшем были обнаружены растения, которые переходили к цветению лишь при воздействии длинного дня. Зависимость развития растения от соотношения длины дня и ночи в течение суток называют фотопериодизмом. Таким образом, сущность фотопериодической реакции заключается в том, что циклическое чередование света и темноты переводит растение из вегетативного в репродуктивное состояние. Изучением фотопериодической реакции растений занимались многие исследователи. Большой вклад в разработку этого вопроса внесли ученые В.Н. Любименко, М.Х. Чайлахян, В.И. Разумов, Б.С. Мошков и др. Фотопериодизм, так же как и яровизация, представляет собой приспособительную реакцию, позволяющую растениям зацветать в определенное, наиболее благоприятное время года. Как правило, длиннодневные растения северные, а короткодневные — южные. Для короткодневных растений более благоприятны повышенные ночные температуры, тогда как для длиннодневных — пониженные. Фотопериодическая реакция не только затрагивает процесс развития растений, но и вызывает некоторые изменения ростовых процессов. Особенно четко показана зависимость клубнеобразования от соответствующего соотношения дня и ночи (М.Х. Чайлахян). По отношению к фотопериодической реакции зацветания все растения можно разделить на несколько групп: короткодневные растения (КДР), которые зацветают при длине дня меньше определенной,— критической продолжительности; длиннодневные растения (ДДР), зацветающие при длине дня больше определенной критической продолжительности; нейтральные растения (НДР), которые зацветают при любой длине дня. Кроме этого, в настоящее время выделены еще коротко-длиннодневные и длинно-короткодневные группы растений, цветение которых происходит при смешанных фотопериодах. В каждой из названных групп есть растения, обязательно требующие для зацветания соответствующего фотопериода (облигатные), и есть растения, лишь ускоряющие зацветание при определенной длине дня. К короткодневным растениям относятся рис, сахарный тростник, кукуруза, хризантема, к длиннодневным — растения умеренных широт: пшеница, овес, лен, свекла, шпинат, клевер.