Файл: Методология_и_организ.научн.исследований.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 26.11.2019

Просмотров: 1204

Скачиваний: 5

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Особое значение имеет добросовестность при проведении экспериментальных работ; недопустима небрежность, что приводит к большим искажениям, ошибкам. Нарушения этих требований — к повторным экспериментам, что продлевает исследования.

Обязательным требованием проведения эксперимента является ведение журнала. Форма журнала может быть произвольной, но должна наилучшим образом соответствовать исследуемому процессу с максимальной фиксацией всех факторов. В журнале отмечают тему НИР и тему эксперимента, фамилию исполнителя, время и место проведения эксперимента, характеристику окружающей среды, данные об объекте эксперимента и средствах измерения, результаты наблюдений, а также другие данные для оценки получаемых результатов.

Журнал нужно заполнять аккуратно, без каких-либо исправлений. При получении в одном статистическом ряду результатов, резко отличающихся от соседних измерений, исполнитель должен записать все данные без искажений и указать обстоятельства, сопутствующие указанному измерению. Это позволит установить причины искажений и квалифицировать измерения как соответствующие реальному ходу процесса или как грубый промах.

Одновременно с измерениями исполнитель должен проводить предварительную обработку результатов и их анализ. Здесь особо должны проявляться его творческие способности. Такой анализ позволяет контролировать исследуемый процесс, корректировать эксперимент, улучшать методику и повышать эффективность эксперимента.

Важны при этом консультации с коллегами по работе и особенно с научным руководителем. В процессе эксперимента необходимо соблюдать требования инструкций по промсанитарии, технике безопасности, пожарной профилактике. Исполнитель должен уметь организовать рабочее место, руководствуясь принципами НОТ.

Вначале результаты измерений сводят в таблицы по варьирующим характеристикам для различных изучаемых вопросов. Очень тщательно уточняют сомнительные цифры. Устанавливают точность обработки опытных данных.

Особое место отведено анализу эксперимента — завершающей части, на основе которой делают вывод о подтверждении гипотезы научного исследования. Анализ эксперимента — это творческая часть исследования. Иногда за цифрами трудно четко представить физическую сущность процесса. Поэтому требуется особо тщательное сопоставление фактов, причин, обусловливающих ход того или иного процесса и установление адекватности гипотезы и эксперимента.

При обработке результатов измерений и наблюдений широко используют методы графического изображения. Графическое изображение дает наиболее наглядное представление о результатах экспериментов, позволяет лучше понять физическую сущность исследуемого процесса, выявить общий характер функциональной зависимости изучаемых переменных величин, установить наличие максимума или минимума функции.


Для графического изображения результатов измерений (наблюдений), как правило, применяют систему прямоугольных координат. Прежде чем строить график, необходимо знать ход (течение) исследуемого явления. Качественные закономерности и форма графика экспериментатору ориентировочно известны из теоретических исследований.

Точки на графике необходимо соединять плановой линией так, чтобы они по возможности ближе проходили ко всем экспериментальным точкам. Если соединить точки прямыми отрезками, то получим ломаную кривую. Она характеризует изменение функции по данным эксперимента. Обычно функции имеют плавный характер. Поэтому при графическом изображении результатов измерений следует проводить между точками плавные кривые.

Резкое искривление графика объясняется погрешностями измерений.

При графическом изображении результатов экспериментов большую роль играет выбор системы координат или координатной сетки.

Координатные сетки бывают равномерными и неравномерными. У равномерных координатных сеток ординаты и абсциссы имеют равномерную шкалу. Например, в системе прямоугольных координат длина откладываемых единичных отрезков на обеих осях одинаковая.

Из неравномерных координатных сеток наиболее распространены полулогарифмические, логарифмические, вероятностные.

Полулогарифмическая сетка имеет равномерную ординату и логарифмическую абсциссу.

Логарифмическая координатная сетка имеет обе оси логарифмические; вероятностная — ординату, обычно равномерную, и абсциссу — вероятностную шкалу.

Назначение неравномерных сеток разное. Чаще их применяют для более наглядного изображения функций. Так, многие криволинейные функции спрямляют на логарифмических сетках. Вероятностная сетка применяется в различных случаях: при обработке измерений для оценки их точности, при определении расчетных характеристик.

Большое значение имеет выбор масштаба графика, что связано с размерами чертежа и соответственно с точностью снимаемых, с него значений величин. Известно, что чем крупнее масштаб, тем выше точность снимаемых значений. Однако, как правило, графики не превышают размеров 20x15 см, что является удобным при составлении отчетов.

Масштаб по координатным осям обычно применяют разный. От его выбора зависит форма графика — он может быть плоским (узким) или вытянутым (широким) вдоль оси.

Расчетные графики, имеющие максимум (минимум) функции или какой-либо сложный вид, особо тщательно необходимо вычерчивать в зонах изгиба. На таких участках количество точек для вычерчивания графика должно быть значительно больше, чем на главных участках.

В некоторых случаях строят номограммы, существенно облегчающие применение для систематических расчетов сложных теоретических или эмпирических формул в определенных пределах измерения величин. Номограммированы могут быть любые алгебраические выражения. В результате сложные математические выражения можно решать сравнительно просто графическими методами. Построение номограмм — трудоемкая операция. Однако, будучи раз построенной, номограмма может быть использована для нахождения любой из переменных, входящих в номограммированные уравнения. Применение ЭВМ существенно снижает трудоемкость номо-граммирования.


Существует несколько методов построения номограмм. Для этого применяют равномерные или неравномерные координатные сетки. В системе прямоугольных координат функции в большинстве случаев на номограммах имеют криволинейную форму. Это увеличивает трудоемкость, поскольку требуется большое количество точек для нанесения одной кривой. В логарифмических координатных сетках функции имеют прямоугольную форму и составление номограмм упрощается.

В процессе экспериментальных измерений получают статистический ряд измерений двух величин объединяемых функций:

У = / (X). (3)

Каждому значению функции уг, ..., уп соответствует определенное значение аргумента хг, х2, ..., хп.

На основе экспериментальных данных можно подобрать алгебраические выражения, которые называют эмпирическими формулами. Такие формулы подбирают лишь в пределах измеренных значений аргумента л:1 - хп. Эмпирические формулы имеют тем большую ценность, чем больше они соответствуют результатам эксперимента.

Необходимость в подборе эмпирических формул возникает во многих случаях. Так, если аналитическое выражение (3) сложное, требует громоздких вычислений, составления программ для ЭВМ, то часто эффективнее пользоваться упрощенной приближенной эмпирической формулой. Опыт показывает, что эмпирические формулы бывают незаменимы для анализа измеренных величин. К эмпирическим формулам предъявляют два основных требования — по возможности они должны быть наиболее простыми и точно соответствовать экспериментальным данным в пределах изменения аргумента.

Таким образом, эмпирические формулы являются приближенными выражениями аналитических. Замену точных аналитических выражений приближенными, более простыми, называют аппроксимацией, а функции — аппроксимирующими.

Процесс подбора эмпирических формул состоит из двух этапов. На первом этапе данные измерений наносят на сетку прямоугольных координат, соединяют экспериментальные точки плавной кривой и выбирают ориентировочно вид формулы. На втором этапе вычисляют параметры формул, которые наилучшим образом соответствовали бы принятой формуле. Подбор эмпирических формул необходимо начинать с самых простых выражений.

Кривые, построенные по экспериментальным точкам, выравнивают известными в статистике методами. Например, методом выравнивания, который заключается в том, что кривую, построенную по экспериментальным точкам, представляют линейной функцией. Для нахождения параметров заданных уравнений часто применяют метод средних и метод наименьших квадратов.

Для исследования закономерностей между явлениями (процессами), которые зависят от многих, иногда неизвестных факторов, применяют корреляционный анализ.

В процессе проведения эксперимента возникает потребность проверить соответствие экспериментальных данных теоретическим предпосылкам, т. е. проверить гипотезу исследования. Проверка экспериментальных данных на адекватность необходима также во всех случаях на стадии анализа теоретико-экспериментальных исследований. Методы оценки адекватности основаны на использовании доверительных интервалов, позволяющих с заданной доверительной вероятностью определять искомые значения оцениваемого параметра. Суть такой проверки состоит в сопоставлении полученной или предполагаемой теоретической функции у = / (х) с результатами измерений.


В практике адекватности применяют различные критерии согласия: Фишера, Пирсона, Романовского.


  1. Анализ теоретико-экспериментальных исследований и формулирование выводов и предложений

Основой совместного анализа теоретических и экспериментальных исследований является сопоставление выдвинутой рабочей гипотезы с опытными данными наблюдений.

Теоретические и экспериментальные данные сравнивают методом сопоставления соответствующих графиков. Критериями сопоставления могут быть минимальные, средние и максимальные отклонения экспериментальных результатов от данных, установленных расчетом на основе теоретических зависимостей. Возможно также вычисление среднеквадра-тического отклонения и дисперсии. Однако наиболее достоверными следует считать критерии адекватности (соответствия) теоретических зависимостей экспериментальным.

В результате теоретико-экспериментального анализа могут возникнуть три случая:

1) установлено полное или достаточно хорошее совпадение рабочей гипотезы, теоретических предпосылок с результатами опыта. При этом дополнительно группируют полученный материал исследований таким образом, чтобы из него вытекали основные положения разработанной ранее рабочей гипотезы, в результате чего последняя превращается в доказанное теоретическое положение, в теорию;

2) экспериментальные данные лишь частично подтверждают положение рабочей гипотезы и в той или иной ее части противоречат ей. В этом случае рабочую гипотезу изменяют и перерабатывают так, чтобы она наиболее полно соответствовала результатам эксперимента. Чаще всего производят дополнительные корректировочные эксперименты с целью подтвердить изменения рабочей гипотезы, после чего она также превращается в теорию;

3) рабочая гипотеза не подтверждается экспериментом. Тогда ее критически анализируют и полностью пересматривают. Затем проводят новые экспериментальные исследования с учетом новой рабочей гипотезы. Отрицательные результаты научной работы, как правило, не являются бросовыми, они во многих случаях помогают выработать правильные представления об объектах, явлениях и процессах.

После выполненного анализа принимают окончательное решение, которое формулируют как заключение, выводы или предложения. Эта часть работы требует высокой квалификации, поскольку необходимо кратко, четко, научно выделить то новое и существенное, что является результатом исследования, дать ему исчерпывающую оценку и определить пути дальнейших исследований. Обычно по одной теме не рекомендуется составлять много выводов (не более 5—10). Если же помимо основных выводов, отвечающих поставленной цели исследования, можно сделать еще и другие, то их формулируют отдельно, чтобы не затемнить конкретного ответа на основную задачу темы.


Все выводы целесообразно разделить на две группы: научные и производственные. При выполнении НИР заботятся о защите государственного приоритета на изобретения и открытия.

Далее приведена примерная схема анализа теоретико-экспериментальных исследований.

Общий анализ теоретических и экспериментальных исследований. Сопоставление экспериментов с теорией. Анализ расхождений. Уточнение теоретических моделей, исследований и выводов. Дополнительные эксперименты (в случае необходимости). Превращение гипотезы в теорию. Формулирование выводов, составление научно-технического отчета. Рецензирование. Составление доклада. Исправление рукописи.


Тема 4. ВНЕДРЕНИЕ И ЭФФЕКТИВНОСТЬ НАУЧНЫХ ИССЛЕДОВАНИЙ

ПЛАН

  1. Внедрение научных исследований

  2. Эффективность научных исследований

  1. Внедрение научных исследований

Внедрение завершенных научных исследований в производство — заключительный этап НИР.

Внедрение — это передача производству научной продукции (отчеты, инструкции, временные указания, технические условия, технический проект и т. д.) в удобной для реализации форме, обеспечивающей технико-экономический эффект. НИР превращается в продукт лишь с момента ее потребления производством.

Заказчиками на выполнение НИР могут быть технические управления министерств, тресты, управления, предприятия, НИИ и т. д.

Подрядчик — научно-исследовательская организация, выполняющая НИР в соответствии с подрядным двусторонним договором, обязан сформулировать предложение для внедрения. Последнее в зависимости от условий договора должно содержать технические условия, техническое задание, проектную документацию, временную инструкцию, указание и т. д.

Процесс внедрения состоит из двух этапов: опытно-производственного внедрения и серийного внедрения (внедрение достижений науки, новой техники, новой технологии).

Как бы тщательно ни проводились НИР в научно-исследовательских организациях, все же они не могут всесторонне учесть различные, часто случайные факторы, действующие в условиях производства. Поэтому научная разработка на первом этапе внедрения требует опытной проверки в производственных условиях.

Предложение о законченных НИР рассматривают на научно-технических советах, а в случаях особо ценных предложений — на коллегиях министерства, и направляют на производство для практического применения.

После опытно-производственного испытания новые материалы, конструкции, технологии, рекомендации, методики внедряют в серийное производство как элементы новой техники. На этом, втором, этапе научно-исследовательские организации не принимают участия во внедрении. Они могут по просьбе внедряющих организаций давать консультации или оказывать незначительную научно-техническую помощь.

После внедрения достижений науки в производство составляют пояснительную записку, к которой прилагают акты внедрения и эксплуатационных испытаний, расчет экономической эффективности, справки о годовом объеме внедрения по включении получаемой экономии в план снижения себестоимости, протокол долевого участия организаций в разработке и внедрении, расчет фонда заработной платы и другие документы.