ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 01.12.2019
Просмотров: 2881
Скачиваний: 5
БОТАНИКА – наука, изучающая строение, функционирование, рост и развитие растительных организмов на уровне клеток, тканей, органов, организма в целом, растительных сообществ и экологических систем. Дисциплина даёт понимание общебиологических законов и единства живой и неживой природы.
1. Анатомия растений
1.1. Фитоцитология
Фитоцитология – раздел ботаники, изучающий живые растительные клетки, их происхождение, строение, функционирование, процессы клеточного размножения, старения и гибели
Клетка – наименьшая структурная и функциональная единица живого организма. Клетка – это самовоспроизводящаяся форма материи, состоящая из определённых молекулярных структур, собранных в определённой последовательности. Форма и атомарный состав молекул, формирующих клетку, определяет их функции и свойства.
Все процессы (реакции), проходящие в клетке, называются метаболизмом. Метаболизм представляет собой непрерывный процесс передачи энергии химических связей (удерживающих атомы в составе молекулы) от одних молекул другим. В реакциях метаболизма выделяют две составляющие:
катаболизм – реакции разрушения сложных молекулярных структур на простые, проходящие с выделением энергии;
анаболизм – реакции синтеза, создания сложных молекулярных структур из простых, протекающие с поглощением энергии.
Основным источником энергии для растительных организмов является энергия солнечного света. Под действием световой энергии в хлоропластах происходит синтез глюкозы (С6Н12О6) из углекислого газа (СО2) и водорода (Н) воды, т.е. энергия света преобразуется в энергию химических связей, которая удерживает атомы в молекуле глюкозы. В дальнейшем часть глюкозы в митохондриях сжигается (разрушается) до углекислого газа и водорода, который, взаимодействуя с кислородом, образует воду. Энергия, выделяющаяся при разрушении глюкозы, соединяет аденозиндифосфорную кислоту (АДФ) с ещё одной фосфорной кислотой, в результате чего получается универсальная молекула-энергоноситель аденозинтрифосфорная кислота (АТФ). Энергия химической связи, заключённая в молекуле АТФ, выделяется при её разрушении и используется для перестройки молекулы глюкозы в другие молекулярные вещества с изменённой структурой, составом и функциями. Так из глюкозы через цепь реакций катаболизма-анаболизма образуются липиды и аминокислоты, а из аминокислот – белки.
Вещества, образованные клеткой, в зависимости от условий, формы и свойств молекул, составляющих их, могут выполнять ряд функций:
-
Строительную – формировать долговременные комплектующие структуры протопласта (органеллы) и межклеточного вещества;
-
Запасающую – долговременно храниться в органеллах клетки, в неактивном состоянии, содержа в себе энергию химических связей;
-
Энергетическую – передавать энергию химических связей в реакциях катаболизма-анаболизма от одних молекул другим;
-
Управляющую – регулировать ход и скорость химических реакций в клетке.
Функционально клетку делят на:
протопласт – «живую» организующую часть, создающую условия для прохождения реакций метаболизма;
производные протопласта – «неживую» организованную часть, т.е. вещества и структуры, образованные в результате метаболизма.
Рис. 1. Общее строение растительной клетки
Протопласт
В состав протопласта входят:
плазмалемма – внешняя мембрана протопласта, обладающая свойством полупроницаемости и выполняющая барьерную функцию;
гиалоплазма – коллоидный раствор, заполняющий протопласт внутри, создающий среду для прохождения реакций метаболизма;
органеллы клетки (9 типов) – обновляющиеся молекулярные структуры, характеризующиеся определенной формой, свойствами и функциями. Взаимодействие органелл клетки обеспечивает её работу как открытой подсистемы организма, обеспечивает пространственную изоляцию и прохождение разнонаправленных реакций метаболизма в клетке.
К органеллам клетки относятся:
1. Ядро – двумебранная органелла клетки, заполненная ядерным соком (кариоплазмой), в котором находятся хроматин (ДНК) и ядрышки (РНК) – молекулы генетического программного обеспечения клетки. Основная функция ядра – реализация генетической программы развития и функционирования клетки и всего организма в целом.
2. Пластиды – двумембранные полуавтономные органеллы клетки, заполненные коллоидным раствором – стромой (матриксом), в котором находится ДНК, РНК и рибосомы. Выделяют три типа пластид:
Хлоропласты – пластиды, у которых внутренняя мембрана образует сеть взаимосвязанных между собой плоских пузырьков – ламел (тилакоидов), собранных в стопки – граны. В мембранах ламел находятся световоспринимающие пигменты хлорофилл, каротин, ксантофилл. Функция хлоропластов – фотосинтез – преобразование энергии солнечного света в энергию химических связей молекул, используемую для синтеза глюкозы из углекислого газа и водорода воды. Хлоропласты характерны для клеток хлоренхимы листьев.
Хромопласты – пластиды без сложной внутренней мембранной структуры, в которых отсутствует пигмент хлорофилл, а каротин и ксантофилл сконцентрированы в строме пластида. Хромопласты образуются в результате старения хлоропластов (пожелтение листьев).
Лейкопласты – пластиды со слаборазвитой внутренней мембраной, не имеющие пигментов. Функция – накопление в строме запасных питательных веществ (белков, липидов, углеводов). Характерны для всех тканей, особенно имеющих запасающую функцию.
3. Митохондрии – двумембранные полуавтономные органеллы клетки, заполненные коллоидным раствором – матриксом, в котором находится ДНК, РНК и рибосомы. Внутренняя мембрана митохондрий больше по площади, чем наружная и образует складки – кристы. Основная функция митохондрий – разрушение органических соединений до углекислого газа и водорода воды, и соединение АДФ (аденозиндифосфорной кислоты) с молекулой фосфорной кислоты в АТФ (аденозинтрифосфорную кислоту) – молекулу-энергоноситель.
4. Эндоплазматическая сеть (ЭПС) – одномембранная органелла в виде системы взаимосвязанных мембранных плоских цистерн и трубочек. Выполняет функцию транспорта веществ внутри системы. Различают гранулярную ЭПС (на поверхности которой находятся рибосомы) и гладкую ЭПС (без рибосом на поверхности). Из мембран ЭПС в протопласте образуются органеллы: аппарат Гольджи, вакуоли и оболочка ядра.
5. Аппарат Гольджи – одномембранная органелла, состоящая из нескольких плоских мембранных пузырьков – диктиосом. Образование аппарата Гольджи начинается с выдувания ЭПС мембранных пузырьков, заполненных определёнными веществами. Эти пузырьки сливаются в плоские цистерны диктиосом, где происходят химические реакции преобразования поступивших веществ в другие соединения. Последняя диктиосома, с готовыми веществами, распадается на маленькие секреторные пузырьки, которые встраиваются в плазмалемму, выводя внутреннее содержимое за пределы протопласта на клеточную стенку. Функция аппарата Гольджи – выделительная. Вместе с ЭПС может строить вакуоли, в которые выделять преобразованные вещества.
6. Вакуоли – одномембранные пузырьки, образованные ЭПС или аппаратом Гольджи. В зависимости от функций веществ, заполняющих вакуоли, их делят на:
Сократительные (пульсирующие) вакуоли – заполненные клеточным соком (раствором солей и других веществ). Выполняют функцию поддержания тургорного (осмотического) давления в клетке, накопления растворимых защитных и запасающих веществ;
Запасающие вакуоли – накапливающие нерастворимые запасные питательные вещества (белки, липиды, углеводы);
Лизосомы – вакуоли, заполненные ферментами, разрушающими ненужные клетке макромолекулы и неработающие органеллы;
Пероксисомы – вакуоли, заполненные веществами, нейтрализующими активные формы кислорода, которые образуются при фотосинтезе, дыхании, разрушении макромолекул.
7. Рибосомы – безмембранные органеллы, состоящие из молекул РНК и белка. Выполняют функцию синтеза белка из аминокислот.
8. Микротрубочки – органеллы в виде трубочек, образованных белком тубулином. Выполняют в клетке опорную функцию (служат опорой для всех органелл протопласта, обеспечивают их перемещение по клетке и поддерживают форму протопласта).
9. Микрофиламенты – органелла в виде тяжей, образованных белком актином. Функция – генерация (создание) тока гиалоплазмы по клетке. Вместе с микротрубочками образует опорную структуру клетки – цитоскелет.
Производные вещества протопласта
К производным веществам протопласта относятся:
1. Физиологически активные вещества, регулирующие функционирование, рост и развитие клетки и организма в целом:
Ферменты – белковые молекулы-катализаторы, активирующие химические реакции в клетке.
Витамины – небелковые молекулы-катализаторы, активирующие химические реакции в клетке.
Гормоны – вещества, активирующие деление клеток, ростовые процессы в них и организме в целом.
Фитонциды – защитные отравляющие вещества, защищающие клетку и организм от повреждений другими организмами.
2. Запасные вещества – временно неактивные полимерные вещества, содержащие большое количество энергии в химических связях. Откладываются в лейкопластах и вакуолях.
3. Клеточный сок – раствор солей и других веществ, заполняющий сократительные вакуоли. Выполняет регуляцию давления в клетке, поглощения воды, накопления защитных веществ.
4. Клеточная стенка – целлюлозная оболочка клетки, выполняющая функции внешней опоры, защищающей протопласт, и межклеточного вещества, соединяющего клетки между собой в ткань. Образуется в результате выделения целлюлозы и других веществ аппаратом Гольджи за пределы протопласта (в телофазе митоза или мейоза клеточная стенка делит материнскую клетку на две дочерние). Клеточная стенка в своём строении может иметь три слоя:
серединная пластинка – является общей для двух соседних клеток, образуется аппаратом Гольджи первой. Состоит из пектиновых веществ;
первичная клеточная оболочка – откладывается на серединную пластинку изнутри небольшим слоем. Образована преимущественно целлюлозой, которая пропитывается гемицеллюлозой, гликопротеидами и пектиновыми веществами, эти вещества придают клеточной оболочке гибкость и эластичность;
вторичная клеточная оболочка – образуется в клетках тканей, которые выполняют опорную функцию, имеет несколько слоёв, в которых целлюлоза откладывается разнонаправлено. Эта оболочка намного жёстче и толще чем первичная оболочка. Целлюлоза пропитывается гемицеллюлозой и лигнином.
К структурным компонентам клеточной стенки относятся:
плазмодесмы – участки цитоплазмы, проходящие через клеточную стенку и соединяющие протопласты двух соседних клеток;
десмотрубочки – участки ЭПС внутри плазмодесм, соединяющие ЭПС двух соседних клеток;
поровое поле – тонкий участок первичной клеточной оболочки вокруг плазмодесмы;
пора – отверстие во вторичной клеточной оболочке над поровым полем. Поры бывают простые (с ровным краем) и окаймлённые (с нависающим краем над поровым полем).
Жизненный цикл клетки представляет собой период существования клетки от момента образования до момента деления или гибели. В жизненном цикле клетки выделяют два периода:
интерфаза – период существования и функционирования клетки от момента образования до начала деления;
деление – период образования из одной клетки двух (митоз) или четырёх (мейоз).
Интерфаза включает в себя три периода: G1 (G0), S и G2.
Период интерфазы G1начинается с момента образования клетки и связан с ростом клетки и увеличения количества её органелл. В зависимости от местоположения в организме клетки функционально специализируются, приобретают характерное строение и выполняют необходимую работу. Если клетка не программируется организмом на дальнейшее деление, она остаётся на этой фазе развития, которая обозначается как (G0) и продолжает выполнять свои функции до момента гибели. Если клетка программируется организмом на дальнейшее деление, она переходит в период интерфазы S.
Период интерфазы S связан с удвоением наследственной генетической информации в ядре клетки, т.е. происходит удвоение молекул ДНК, для передачи дубликатов генетической программы в две дочерние клетки во время деления.
Период интерфазы G2 связан с подготовкой клетки к делению, образуются структуры и вещества, используемые клеткой во время деления.
|
Рис. 2. Жизненный цикл клетки: НК – начало и конец жизненного цикла, G1 – фаза роста клетки, G0 – фаза специализации клетки, S – фаза репликации (удвоения) ДНК, G2 – фаза подготовки к делению клетки, М – деление клетки митозом или мейозом |
Митоз – деление клетки на две дочерние с сохранением хромосомного набора (дубликаты генетической программы, зашифрованной на молекулах ДНК, передаются в две образующиеся дочерние клетки).
Митоз состоит из четырёх фаз:
-
Профаза. В клетке разрушается ядерная оболочка, хроматин (рабочая форма ДНК) и ядрышки (РНК) упаковываются в хромосомы (транспортную форму ДНК), т.е. генетическая программа архивируется для транспортировки.
-
Метафаза. Хромосомы выводятся на экватор клетки и к их половинкам (хроматидам) присоединяются микротрубочки веретена деления.
-
Анафаза. Микротрубочки веретена деления сокращаются и разводят половинки хромосом к разным полюсам клетки.
-
Телофаза. На полюсах клетки вокруг половинок хромосом ЭПС формирует новые ядерные оболочки. Половинки хромосом распаковываются (разархивируются) в хроматин, т.е. генетическая программа разархивируется. Аппарат Гольджи строит клеточную стенку, разделяющую материнскую клетку на две дочерние.
Рис. 3. Деление растительной клетки митозом
Рис. 4. Перераспределение микротрубочек в течение клеточного цикла
по мере образования клеточной стенки: А – интерфаза G2 , Б – перед профазой,
В – метафаза, Г – телофаза (цитокинез), Д, Е – интерфазы G1
Мейоз – редукционное деление клетки на четыре дочерние с уменьшением двойного (диплоидного 2n) набора хромосом вдвое и рекомбинацией (изменением) генетической программы в новых клетках.
Мейоз проходит в два этапа, каждый из которых состоит из четырёх фаз.
1-й этап:
-
Профаза 1. В клетке разрушается ядерная оболочка, хроматин (рабочая форма ДНК) и ядрышки (РНК) упаковываются в хромосомы (транспортную форму ДНК), т.е. генетическая программа архивируется для транспортировки. Гомологичные одинаковые хромосомы (отцовские и материнские) скручиваются между собой – конъюгация и обмениваются генами (участками хромосом) – кроссинговер, после чего расплетаются.
-
Метафаза 1. Хромосомы выводятся на экватор клетки и к гомологичным хромосомам присоединяются микротрубочки веретена деления, идущие из разных полюсов клетки.
-
Анафаза 1. Микротрубочки веретена деления сокращаются и разводят гомологичные хромосомы к разным полюсам клетки.
-
Телофаза 1. Гомологичные хромосомы группируются на полюсах клетки. Аппарат Гольджи формирует клеточную стенку, которая делит материнскую клетку на две дочерние по экватору.