ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 03.06.2020

Просмотров: 663

Скачиваний: 4

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

куация людей.

Поскольку в помещении присутствует электрооборудование под напряжением то для тушения пожаров рекомендуется использовать двуокись углерода для прекращения подачи кислорода к очагу возгорания. Возможно применение огнегасительных порошков. Первичными средствами пожаротушения в данном случае могут послужить ручные огнетушители типа ОУ-2, ОУ-5, ОУ-8, ОУБ-3, ОУБ-7 или передвижные типа ОУ-25, ОУ-80.

В качестве средств обнаружения пожара применена противопожарная сигнализация с дымовыми датчиками.


6.3 Чрезвычайные ситуации


Чрезвычайные ситуации возникают:

природного характера (землетрясения, наводнения, извержения вулканов, оползни, сели, ураганы, смерчи, природные пожары и так далее);

техногенного характера (пожары, взрывы, аварии на химически опасных объектах, выбросы радиоактивных и сильнодействующих веществ, гид-родинамические аварии, аварии на системах жизнеобеспечения, внезапные обрушения зданий и сооружений);

экологического характера (загрязнение атмосферы, разрушение озонового слоя земли, опустынивание земель, засоление почв и другое).

В случае возникновения войны с применением ядерного оружия возникают следующие поражающие факторы:

ударная волна;

световое излучение;

проникающая радиация;

радиоактивное заражение;

электромагнитный импульс.

При возникновении чрезвычайных ситуаций, аварий на радиоактивно опасных и химически вредных предприятиях, а также при применении средств массового поражения любой объект промышленности может оказаться в сфере воздействия поражающих факторов. Очевидно, что степень разрушения объектов

будет различная и она зависит от места расположения в очаге поражения и подготовленности объекта к защите от воздействия поражающих факторов. Объекты, на которых приняты меры по повышению устойчивости их работы, будут иметь меньшие повреждения, а следовательно и сроки ввода их в действие после ликвидации чрезвычайных ситуаций будут более короткими.

Основными принципами защиты населения при ЧС являются:

заблаговременная подготовка и осуществление защитных мероприятий на всей территории страны. Этот принцип предполагает, прежде всего, накопление средств защиты человека от опасных и вредных факторов и поддержании их в готовности для использования, а также подготовку и проведение мероприятий по эвакуации населения от опасных зон (зон риска);

дифференцированный подход к определению характера, объема и сроков проведения этих мероприятий. Дифференцированный подход выражается в том, что характер и объем защитных мероприятий устанавливается в зависимости от вида источников опасных и вредных факторов, а также от местных условий;

комплексность проведения защитных мероприятий для создания безопасных и здоровых условий во всех сферах деятельности человека в любых условиях обстановки. Данный принцип обуславливается большим разнообразием опасных и вредных факторов среды обитания и заключается в эффективном применении способов средств защиты от последствий стихийных бедствий, производственных аварий и катастроф, а также современных средств поражения, согласованном осуществлении их со всеми мероприятиями по обеспечения безопасности жизнедеятельности в современной техносоциальной среде.


Аварии на электроэнергетических сетях. Подобные аварии приводят к ЧС, обычно, из-за вторичных последствий и при условии наложения на них каких-либо чрезвычайных условий. К особенно тяжелым последствиям приводят аварии на электроэнергетических сетях в зимнее время года, а также удаленных и труднодоступных районах. Особенно характерны такие чрезвычайные ситуации для сельских районов или в особо холодные зимы из-за перегрузок энергосетей в связи с резким увеличением расхода энергии на обогрев.

Оценка устойчивости работы ЭГУ выполнена при помощи моделирования уязвимости прибора к воздействию поражающих факторов ядерного взрыва.

6.3.1 У д а р н а я в о л н а. Область резкого сжатия среды, которая в виде сферического слоя распространяется во все стороны от места взрыва со сверхзвуковой скоростью называется ударной волной. Ударная волна в воздухе образуется за счет колоссальной энергии, выделяемой в зоне реакции, где исключительно высокая температура, а давление достигает миллиардов атмосфер. С увеличением расстояния от места взрыва скорость распространения волны быстро падает, а ударная волна ослабевает.

При непосредственном воздействии ударной волны причиной разрушения крупногабаритных объектов является избыточное давление РФ. Избыточное давление это разность между максимальным давлением во фронте ударной волны и нормальным атмосферным давлением перед этим фронтом. Значение избыточного давления зависит от мощности, вида взрыва и расстояния. Величиной, характеризующей воздействие ударной волны на мелкогабаритные объекты, принято считать величину скоростного напора ударной волны. В качестве количественного показателя устойчивости ЭГУ к воздействию ударной волны принимается значение избыточного давления, при котором устройство сохраняет или получает разрушения.

Так как электрогидравлический усилитель мощности имеет малые размеры и устанавливается на напорной линии трубопровода или на сливной линии гидродвигателя работающего от источника питания, то промышленное здание будет защитой разрабатываемого электрогидравлического усилителя мощности от ударной волны.

6.3.2 С в е т о в о е и з л у ч е н и е. Световое излучение это совокупность видимого света и близких к нему по спектру ультрафиолетовых и инфракрасных лучей. Источник светового излучения - светящаяся область взрыва. Температура светящейся области в течение некоторого времени сравнима с температурой поверхности солнца (800010000 °С и минимум 1800 °С). Размеры светящейся области и ее температура быстро изменяются во времени. Поражающее действие светового излучения характери­зуется световым импульсом.

В результате воздействия светового излучения на прибор может произойти воспламенение материалов, использованных в ЭГУ.


В целях безопасности усилителя мощности от воздействия светового излучения, он расположен в системе таким образом, что прямое воздействие светового излучения невозможно. Повышение теплостойкости устройства обеспечено благодаря окраски его корпуса в светлые тона, выполнению питающих и сигнальных проводов с элементами защиты от светового излучения (теплоэкраны, металлическая оплетка). Повышение устойчивости ЭГУ с МЖС к воздействию светового излучения заключается также в замене легковоспламеняющихся материалов на теплостойкие.

6.3.3 П р о н и к а ю щ а я р а д и а ц и я. Проникающая радиация это один из поражающих факторов, представляющих собой гамма-излучение и поток нейтронов.

Критерием устойчивости работы проточной части при воздействии проникающей радиации и радиоактивного заражения является максимальная экспозиционная доза гамма-излучения Д, при которой, начинаются изменения параметров элементов, но работа еще не нарушается.

Действие проникающей радиации зависит от вида излучений. Ввиду малой проникающей способности альфа- и бета-частиц, их воздействие на аппаратуру обычно не учитывают. Поток нейтронов проникающей радиации оказывает воздействие на радиоэлектронные устройства при удалении устройства от очага поражения на величину, не превышающую 3 км. На таком расстоянии выход аппаратуры из строя будет вызван действием ударной волны. Таким образом, из всех составляющих радиоактивного излучения наибольшую опасность представляет гамма-излучение.

Ионизирующая способность гамма лучей характеризуется экспозиционной дозой излучения и измеряется в рентгенах (в СИ Кл/кг).

Гамма излучение, проходя через различные материалы, ослабляется. Степень ослабления зависит от свойств материалов и толщины защитного слоя.

Для стабильной работы системы необходимо выполнить условие:

Кзащ Косл ,

где Кзащ коэффициент защиты,

Косл – коэфициент ослабления.

Коэфициент ослабления:

, (…)

где ожидаемая доза гамма-излучения, Р;

экспозиционная доза гамма-излучения, Р.

Одним из основных материалов, из которых изготавливается электрогидравлический усилитель является органическое стекло, а оно теряет свои физические свойства и характеристики при экспозиционной дозе гамма-излучения равной 105 Р, то есть является нерадиоактивностойким.

Взяв максимальную ожидаемую дозу гамма-излучения равную 106 Р, можно рассчитать необходимый коэффициент ослабления:

Таким образом, прибор необходимо эксплуатировать в помещениях с коэффициентом ослабления не менее десяти.

Рассчитаем коэффициент защиты:

Кзащ систКэ (…)

где Ксист – коэффициент защиты системы. Для здания цеха Ксист = 6.

Кэкр коэффициент защиты экрана.


Из формулы (26):

Коэффициент защиты экрана рассчитывается по формуле:

Кэкр=2Н / Dпол , (…)

где Н - толщина защитного экрана;

Dпол толщина половинного слоя ослабления материала, из которого из­готовлен корпус.

Отсюда, толщина защитного экрана:

(28)

Выбираем материала для экрана свинец, для которого Dпол = 2 см. По формуле (28) определяем толщину экрана Н = 4,18 см.

Таким образом, для ослабления радиоактивного излучения в системе предусмотрен защитный экран из свинца толщиной Н = 4,18 см. Повышение устойчивости ЭГУ с МЖС к воздействию радиоактивного излучения заключается также в применении более радиоактивно устойчивого материала.

6.3.4 Э л е к т р о м а г н и т н ы й и м п у л ь с. Электромагнитный импульс способен вызвать мощные импульсы токов и напряжений в проводах, привести к сгоранию чувствительных элементов, к серьезным нарушениям в измерительных приборах.

Для радиоэлектронной аппаратуры, установленной в помещении и не имеющей антенных устройств, основную опасность представляет импульс, прошедший по цепи питания. Для защиты от воздействия электромагнитных полей используются экранирующие устройства (перегородки, камеры), выполненные из листового металла (стали, дюралюминия) толщиной 1,0 1,5 мм. Эти устройства заземлены.











Изм.

Лист

докум.

Подпись

Дата

Лист

93

УИТС.423124. 181 ПЗ