Файл: Рабочая программа по математике для обучающихся 5 классов разработана на основе Федерального.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 11.01.2024

Просмотров: 116

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

ЦЕЛИ ИЗУЧЕНИЯ УЧЕБНОГО КУРСА

МЕСТО УЧЕБНОГО КУРСА В УЧЕБНОМ ПЛАНЕ

СОДЕРЖАНИЕ УЧЕБНОГО КУРСА "МАТЕМАТИКА"

Дроби

Решение текстовых задач

Наглядная геометрия

ПЛАНИРУЕМЫЕ ОБРАЗОВАТЕЛЬНЫЕ РЕЗУЛЬТАТЫ

Патриотическое воспитание:

Гражданское и духовно-нравственное воспитание:

Трудовое воспитание:

Эстетическое воспитание:

Ценности научного познания:

Физическое воспитание, формирование культуры здоровья и эмоционального благополучия:

Экологическое воспитание:

МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Базовые логические действия:

Базовые исследовательские действия:

Работа с информацией:

Общение:

Сотрудничество:

Самоорганизация:

Самоконтроль:

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Решение текстовых задач

Наглядная геометрия

ПОУРОЧНОЕ ПЛАНИРОВАНИЕ

ОБЯЗАТЕЛЬНЫЕ УЧЕБНЫЕ МАТЕРИАЛЫ ДЛЯ УЧЕНИКА

МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ УЧИТЕЛЯ

ЦИФРОВЫЕ ОБРАЗОВАТЕЛЬНЫЕ РЕСУРСЫ И РЕСУРСЫ СЕТИ ИНТЕРНЕТ

МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

ОБОРУДОВАНИЕ ДЛЯ ПРОВЕДЕНИЯ ЛАБОРАТОРНЫХ И ПРАКТИЧЕСКИХ РАБОТ




ПОЯСНИТЕЛЬНАЯ ЗАПИСКА


ОБЩАЯ ХАРАКТЕРИСТИКА УЧЕБНОГО ПРЕДМЕТА "МАТЕМАТИКА"

Рабочая программа по математике для обучающихся 5 классов разработана на основе Федерального государственного образовательного стандарта основного общего образования с учётом и современных мировых требований, предъявляемых к математическому образованию, и традиций российского образования, которые обеспечивают овладение ключевыми компетенциями, составляющими основу для непрерывного образования и саморазвития, а также целостность общекультурного, личностного и познавательного развития обучающихся. В рабочей программе учтены идеи и положения Концепции развития математического образования в Российской Федерации. В эпоху цифровой трансформации всех сфер человеческой деятельности невозможно стать образованным современным человеком без базовой математической подготовки. Уже в школе математика служит опорным предметом для изучения смежных дисциплин, а после школы реальной необходимостью становится непрерывное образование, что требует полноценной базовой общеобразовательной подготовки, в том числе и математической.

Это обусловлено тем, что в наши дни растёт число профессий, связанных с непосредственным применением математики: и в сфере экономики, и в бизнесе, и в технологических областях, и даже в гуманитарных сферах. Таким образом, круг школьников, для которых математика может стать значимым предметом, расширяется.

Практическая полезность математики обусловлена тем, что её предметом являются фундаментальные структуры нашего мира: пространственные формы и количественные отношения от простейших, усваиваемых в непосредственном опыте, до достаточно сложных, необходимых для развития научных и прикладных идей. Без конкретных математических знаний затруднено понимание принципов устройства и использования современной техники, восприятие и интерпретация разнообразной социальной, экономической, политической информации, малоэффективна
повседневная практическая деятельность. Каждому человеку в своей жизни приходится выполнять расчёты и составлять алгоритмы, находить и применять формулы, владеть практическими приёмами геометрических измерений и построений, читать информацию, представленную в виде таблиц, диаграмм и графиков, жить в условиях неопределённости и понимать вероятностный характер случайных событий.

Одновременно с расширением сфер применения математики в современном обществе всё более важным становится математический стиль мышления, проявляющийся в определённых умственных навыках. В процессе изучения математики в арсенал приёмов и методов мышления человека естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия. Объекты математических умозаключений, правила их конструирования раскрывают механизм логических построений, способствуют выработке умения формулировать, обосновывать и доказывать суждения, тем самым развивают логическое мышление. Ведущая роль принадлежит математике и в формировании алгоритмической компоненты мышления и воспитании умений действовать по заданным алгоритмам, совершенствовать известные и конструировать новые. В процессе решения задач — основой учебной деятельности на уроках математики — развиваются также творческая и прикладная стороны мышления.

Обучение математике даёт возможность развивать у обучающихся точную, рациональную и информативную речь, умение отбирать наиболее подходящие языковые, символические, графические средства для выражения суждений и наглядного их представления.

Необходимым компонентом общей культуры в современном толковании является общее знакомство

с методами познания действительности, представление о предмете и методах математики, их отличий от методов других естественных и гуманитарных наук, об особенностях применения математики для решения научных и прикладных задач. Таким образом,

математическое образование вносит свой вклад в формирование общей культуры человека.

Изучение математики также способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии.

ЦЕЛИ ИЗУЧЕНИЯ УЧЕБНОГО КУРСА


Приоритетными целями обучения математике в 5 классе являются:

  • продолжение формирования основных математических понятий (число, величина, геометрическая фигура), обеспечивающих преемственность и перспективность математического образования обучающихся;

  • развитие интеллектуальных и творческих способностей обучающихся, познавательной активности, исследовательских умений, интереса к изучению математики;

  • подведение обучающихся на доступном для них уровне к осознанию взаимосвязи математики и окружающего мира;

  • формирование функциональной математической грамотности: умения распознавать математические объекты в реальных жизненных ситуациях, применять освоенные умения для решения практико-ориентированных задач, интерпретировать полученные результаты и оценивать их на соответствие практической ситуации.

Основные линии содержания курса математики в 5 классе — арифметическая и геометрическая, которые развиваются параллельно, каждая в соответствии с собственной логикой, однако, не независимо одна от другой, а в тесном контакте и взаимодействии. Также в курсе происходит знакомство с элементами алгебры и описательной статистики.

Изучение арифметического материала начинается со систематизации и развития знаний о натуральных числах, полученных в начальной школе. При этом совершенствование вычислительной техники и формирование новых теоретических знаний сочетается с развитием вычислительной культуры, в частности с обучением простейшим приёмам прикидки и оценки результатов
вычислений.

Другой крупный блок в содержании арифметической линии — это дроби. Начало изучения обыкновенных и десятичных дробей отнесено к 5 классу. Это первый этап в освоении дробей, когда происходит знакомство с основными идеями, понятиями темы. При этом рассмотрение обыкновенных дробей в полном объёме предшествует изучению десятичных дробей, что целесообразно с точки зрения логики изложения числовой линии, когда правила действий с десятичными дробями можно обосновать уже известными алгоритмами выполнения действий с обыкновенными дробями. Знакомство с десятичными дробями расширит возможности для понимания обучающимися прикладного применения новой записи при изучении других предметов и при практическом использовании.

При обучении решению текстовых задач в 5 классе используются арифметические приёмы решения. Текстовые задачи, решаемые при отработке вычислительных навыков в 5 классе, рассматриваются задачи следующих видов: задачи на движение, на части, на покупки, на работу и производительность, на проценты, на отношения и пропорции. Кроме того, обучающиеся знакомятся с приёмами решения задач перебором возможных вариантов, учатся работать с информацией, представленной в форме таблиц или диаграмм.

В Примерной рабочей программе предусмотрено формирование пропедевтических алгебраических представлений. Буква как символ некоторого числа в зависимости от математического контекста вводится постепенно. Буквенная символика широко используется прежде всего для записи общих утверждений и предложений, формул, в частности для вычисления геометрических величин