ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 31.03.2024
Просмотров: 65
Скачиваний: 0
Лекция №11.
Уравнение Менделеева - Клапейрона.
Барометрическая формула.
Распределение Больцмана.
Основное уравнение М.К.Т. (уравнение Клаузиуса).
Средне квадротическая скорость молекул газа.
Средняя кинетическая энергия поступательного движения молекул газа.
Закон распределения молекул идеального газа по скоростям и энергиям теплового движения.
1. Уравнение Менделеева-Клапейрона.
Между параметрами определяющими состояние газа существует определенная связь, называемая уравнением состояния. Его общий вид: , где каждый из параметров является функцией 2-х других.
Объединив закон Бойля-Мариотта и Гей-Люссака, Клапейрон вывел уравнение состояния идеального газа
(12.1)
Для данной массы газа величина постоянная, различная для различных газов.
Менделеев объединил уравнение Клапейрона с законом Авогадро отнеся уравнение (*) к 1-му молю и использовав соответственно молярный объемV. Тогда постоянная будет одинакова для всех газов и обозначается – молекулярная газовая постоянная.(12.2)
и – давление, молярный объем и абсолютная температура газа.Физический смысл –универсальная газовая постоянная, численно равная работе совершенной 1 молем идеального газа при изобарном повышении температуры на 1С.
Определяется из уравнения (12.2) при нормальных условиях:
и
Для произвольной массы газа с молярной массойи объемомуравнение Менделеева-Клапейрона имеет вид:, (12.3)
так как ;, (12.4)
С учетом того что – концентрация,
, тогда ;– представляет собой универсальную газовую постоянную, отнесенную к 1 молекуле.
Тогда (12.5)
Давление идеального газа при данной прямо пропорционально концентрации его молекул. Из 12.5 , то есть, при одинаковыхивсе газы содержат в единице объема одинаковое число молекул.
Число молекул содержащихся в газа при нормальных условиях называетсячислом Лошмидта. .
Уравнение Менделеева-Клайперона является обобщением экспериментальных газовых законов и включает их в качестве частных случаев.
2. Барометрическая формула.
Из-за хаотичного теплового движения молекулы газа занимают весь предоставленный объем, равномерно заполняя его, в случае, если на молекулы газа не действуют внешние силы. Атмосферный воздух земли не ограничен стенками, но не разлетается – этому препятствует сила земного притяжения.
С другой стороны при отсутствии теплового движения () каждая отдельная молекула газа должна была бы падать вниз – они скопились бы у поверхности земли, где их потенциальная энергия минимальна.
Благодаря борьбе этих двух противоположных тенденций установлено подвижное равновесие, при котором – концентрация молекул воздуха у поверхности земли максимальна и постепенно уменьшается с высотой.
Так как , следовательно, по мере подъема над уровнем земли и уменьшением концентрации будет так же уменьшаться и атмосферное давление.
Зависимость давления от высоты р(h) – называется Барометрической формулой: (12.6)
Отсчет высоты идет от уровня моря, где считается нормальным, поэтому можно записать(12.7)
По этой формуле можно определить атмосферное давление в зависимости от высоты, или, измерив, давление, найти высоту.
–молярная масса;
–ускорение свободного падения;
–универсальная газовая постоянная;
–абсолютная температура;
–нормальное давление.
Из (12.5) следует, что давление с высотой убывает тем быстрее, чем тяжелее газ.
График зависимости:
Определим высоту, на которой давле |
|
ние газа падает вдвое h1/2)=1/20.Подставим это в (12.7) и получим ; для воздуха М=29, и |
|
то есть при подъеме на высоту 6 км |
|
над уровнем моря, падает до |
|
половины от первоначального значе- |
|
ния. При подъеме на 12 км давление |
|
упадет до первоначального и т.д. |
Измеряя барометром давления в горах можно согласно формуле (12.7) определить высоту места над уровнем моря. На этом принципе основаны устройства авиационных высотомеров - альтиметров.
3. Распределение Больцмана.
Поскольку давление Р прямопропорционально концентрации n, то для зависимости концентрации газовых молекул от высоты получается аналогичная формула. (12.8)
n - концентрация на высоте h; – концентрация на высоте
–молярная масса молекулы; - универ. газовая постоянная
…(12.9)
где – представляет собой потенциальную энергию на высоте h
……….(12.10)
Изменение концентрации молекул с высотой зависит от соотношения между энергией теплового движения и потенциальной энергией молекул на данной высоте
Больцман показал, что соотношение (12.10) остается справедливым в самом общем случае при наличии любых внешних сил, а не только в поле тяжести. Поэтому (12.9) и (12.10) носит название распределение Больцмана.
4. Основное уравнение мкт.
Основным уравнением кинетической теории газов принято называть уравнение устанавливающее связь между давлением газа, его объемом и энергией. Сила давления газа на стенку сосуда складывается из взаимодействий многочисленных молекул всё время ударяющихся об эту стенку и отскакивающих обратно.
Основное уравнение выводится для идеального газа. Идеальный газ подчиняется уравнению Менделеева - Клапейрона . Это справедливо, если межмолекулярные расстояния таковы, что потенциальной энергией взаимодействия между молекулами можно пренебречь. Чем меньше эта энергия взаимодействия между молекулами, тем лучше удовлетворяет газ уравнению Менделеева-Клапейрона, тем ближе он по своим свойствам к идеальному. Полная энергия идеального газа сводится, следовательно, к сумме кинетической энергии всех его молекул.