Файл: С.Н. Гринфельд Физические основы электроники уч. пособие.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 29.07.2024

Просмотров: 599

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

С.Н. Гринфельд физические основы электроники

1. Электропроводность полупроводников

1.1. Строение и энергетические свойства кристаллов твердых тел

1.2. Электропроводность собственных полупроводников

1.3. Электропроводность примесных полупроводников

1.4. Дрейфовый и диффузионный токи в полупроводниках

2. Электронно-дырочный переход

2.1. Электронно-дырочный переход при отсутствии внешнего напряжения

2.2. Электронно-дырочный переход при прямом напряжении

2.3. Электронно-дырочный переход при обратном напряжении

2.4. Вольт-амперная характеристика электронно- дырочного перехода. Пробой и емкость p-n-перехода

3.1. Общие характеристики диодов

3.2. Виды диодов

4. Полупроводниковые транзисторы

4.1. Биполярные транзисторы

4.1.1. Общая характеристика

4.1.2. Принцип действия транзистора

4.1.3. Схемы включения транзисторов

4.1.5. Влияние температуры на статические характеристики бт

4.16. Составной транзистор

4.2. Полевые транзисторы

4.2.1. Полевые транзисторы с управляющим p-n переходом Структура и принцип действия пт

Характеристики птуп

Параметры птуп

Эквивалентная схема птуп

Схемы включения полевого транзистора

Температурная зависимость параметров птуп

4.2.2. Полевые транзисторы с изолированным затвором

Структуры пт с изолированным затвором

Статические характеристики мдп-транзистора с индуцированным каналом

Статическая характеристика передачи (или сток – затвор)

Статические характеристики мдп-транзистора со встроенным каналом

Максимально допустимые параметры полевых транзисторов

5. Тиристоры

5.1. Классификация тиристоров

5.2. Диодные тиристоры (динисторы)

5.3. Триодные тиристоры

5.4. Симметричные тиристоры (симисторы)

5.5. Зависимость работы тиристора от температуры

6. Усилители

6.1. Классификация, основные характеристики и параметры усилителей

6.2. Искажения в усилителях

6.3. Обратные связи в усилителях

6.3.1. Виды обратных связей

6.3.2. Влияние последовательной отрицательной ос по напряжению на входное и выходное сопротивления усилителя

6.3.3. Влияние отрицательной ос на нелинейные искажения и помехи

6.3.4. Влияние отрицательной ос на частотные искажения

6.3.5. Паразитные ос и способы их устранения

6.4. Усилители низкой частоты

6.5. Каскады предварительного усиления

6.5.1. Каскад с оэ

6 Рис. 6.21. График разрешенной области надежной работы транзистора.5.2. Стабилизация режима покоя каскада с оэ

6.5.3. Работа каскада с оэ по переменному току

6.5.4. Каскад с ок

6.5.5. Усилительный каскад на полевом транзисторе

6.5.6. Схема с ос (истоковый повторитель)

7. Усилители постоянного тока

7.1. Определение усилителя постоянного тока. Дрейф нуля

7.2. Однотактные усилители прямого усиления

7.3. Дифференциальные усилители

7.3.1. Схема дифференциального каскада и ее работа при подаче дифференциального и синфазного входных сигналов

7.3.2. Схемы включения дифференциального усилителя

7.3.3. Коэффициент ослабления синфазного сигнала

7.3.4. Разновидности дифференциальных усилителей

8. Определение и основные характеристики операционных услителей

8.1. Устройство операционных усилителей

8.2. Характеристики операционных усилителей

Усилительные характеристики

Дрейфовые характеристики

Входные характеристики

Выходные характеристики

Энергетические характеристики

Частотные характеристики

Скоростные характеристики

8.3. Классификация оу

8.4. Применение операционных усилителей

Неинвертирующий усилитель на оу

Повторитель напряжения

И Рис. 8.12. Схема инвертирующего усилителянвертирующий усилитель

Инвертирующий сумматор

У Рис. 8.14. Схема усредняющего усилителясредняющий усилитель

Внешняя компенсация сдвига

Дифференциальный усилитель

Неинвертирующий сумматор

Интегратор

Дифференциатор

Логарифмический усилитель

Усилители переменного напряжения

9. Устройства сравнения аналоговых сигналов

9.1. Компараторы

9.2. Мультивибратор

10. Микроэлектроника

10.1. Основные определения

10.2. Типы Интегральных схем

10.2.1. Классификация ис

10.2.2. Полупроводниковые ис

10.2.3. Гибридные ис

10.3. Особенности интегральных схем как нового типа электронных приборов

ЛабораторНые рабоТы Лабораторная работа 1 исследование статистических характеристик биполярного транзистора

О Рис. 1. Схема исследования характеристик транзистора по схеме с оЭписание лабораторной установки

Порядок выполнения работ

Лабораторная работа 2 исследование однокаскадного усилителя с общим эмиттером

Описание лабораторной установки

Порядок выполнения работы

Лабораторная работа 3 дифференциального усилителя постоянного тока

Описание лабораторной установки

Порядок выполнения работы

Контрольная работа

Задание

Последовательность расчета усилителя

Последовательность Расчета усилителя в области низких частот

Экзаменационные вопросы

Литература

Содержание

Софья наумовна гринфельд физические основы электроники Учебное пособие

681013, Комсомольск-на-Амуре, пр. Ленина, 27.

4.16. Составной транзистор

Коэффициент усиления каскадов, выполненных на биполярных транзисторах, определяется коэффициентом передачи тока транзистора в схеме с ОЭ (h21э).Увеличение этого коэффициента в ряде случаев позволяет существенно упростить схемотехнику проектируемых усилительных устройств. Так, при построении многокаскадных усилителей можно обойтись меньшим числом каскадов или при управлении мощной нагрузкой отказаться от промежуточных усилителей мощности и управлять значительной мощностью непосредственно от маломощного источника.

Увеличить h21э можно чисто схемотехническим путем за счет каскадного включения нескольких транзисторов. Применительно к транзисторам одного типа проводимости такие схемы были впервые предложены Дарлингтоном и поэтому часто называются схемами Дарлингтона или составными транзисторами.

Составной транзистор (пара Дарлингтона), получаемый соединением коллекторов и эмиттера Э1 с базой Б2 (рис. 4.13), характеризуется большим входным сопротивлением, большим коэффициентом передачи базового тока  и меньшим выходным сопротивлением на переменном сигнале по сравнению с одиночным БТ.

Интегральный коэффициент передачи по току составного транзистора(D) определяется следующим образом:

D = iкD/iбD = iкD/iб1 = (iк1 + iк2)/iб1= (1iб1+2iб2)/iб1= (1iб1+2iэ1)/iб1=

= (1iб1+2 (1 + 1)iб1)/iб1 =1 +2 (1 + 1) =1 +21 +2.

Если составной транзистор (СТ) синтезирован на основе одинаковых транзисторов (1 =2 =), то

D =(+ 2),

т.е. Dхарактеризуется квадратичным увеличением.

Суммарное входное сопротивление (h11эD) составного транзисторабольше входного сопротивления одиночного транзистора, так как входы Т1 и Т2включены последовательно, т.е.

h11эD= uвхD/iбD= (uвх1+ uвх2)/iб1= (iб1h11э1+ iб2h11э2)/iб1= (iб1h11э1+ iэ1h11э2)/iб1=

= (iб1h11э1+ (1 + 1)iб1h11э2)/iб1= h11э1+ (1 + 1)h11э2.


Из итогового выражения видно, суммарное входное сопротивление определяется в основном входным сопротивлением второго транзистора и коэффициентом передачи по току первого транзистора.

Так как коллекторные цепи транзисторов включены параллельно (см. рис.4.13), следовательно, суммарная проводимость составного транзистора(h22эD) возрастает (выходное сопротивление уменьшается).

На практике составные транзисторы могут быть реализованы на основе соответствующего соединения одиночных транзисторов, но промышленностью также выпускаются уже готовые составные транзисторы, конструктивно оформленные в едином корпусе.

а)


4.2. Полевые транзисторы

Полевые транзисторы представляют собой полупроводниковые приборы, в которых прохождение тока обусловлено дрейфом основных носителей заряда под действием продольного электрического поля. Управление величиной тока в них осуществляется путем изменения электропроводности токопроводящего слоя (канала) полупроводника поперечным электрическим полем. Каналом служит тонкий слой однородного полупроводника. По конструктивному исполнению и технологии изготовления полевые транзисторы можно разделить на две группы:

  1. полевые транзисторы с управляющим p-n-переходом;

  2. полевые транзисторы с изолированным затвором.

Основной особенностью полевых транзисторов, по сравнению с биполярными, является их высокое входное сопротивление, которое может достигать 109 – 1014 Ом. Таким образом, эти приборы можно рассматривать как управляемые потенциалом, что позволяет на их основе создать схемы с чрезвычайно низким потреблением энергии в статическом режиме. Последнее особенно существенно для электронных статических микросхем памяти с большим количеством запоминающих ячеек.

Так же, как и биполярные, полевые транзисторы могут работать в ключевом режиме, однако падение напряжения на них во включенном состоянии весьма значительно, поэтому эффективность их работы в мощных схемах меньше, чем у биполярных приборов.

Полевые транзисторы могут иметь каналы как p-типа, так и n-типа, управление которыми осуществляется при разной полярности на электродах (поскольку mn > mp, выгоднее применять n-канал). Это свойство комплементарности расширяет возможности при конструировании схем и широко используется при создании запоминающих ячеек и цифровых схем на основе МДП-транзисторов.

4.2.1. Полевые транзисторы с управляющим p-n переходом Структура и принцип действия пт

Полевой транзистор с управляющим p-n-переходом (ПТУП) – это полевой транзистор, затвор которого отделен в электрическом отношении от канала p-n-переходом, смещенным в обратном направлении (рис. 4.14).

Электрод, из которого в канал входят носители заряда, называютистоком; электрод, через который из канала уходят носители заряда, – стоком; электрод, служащий для регулирования поперечного сечения канала, – затвором. При подключении к истоку отрицательного (для n-канала), а к стоку положительного напряжения в канале возникает электрический ток, создаваемый движением электронов от истока к стоку, т.е. основными носителями заряда. В этом заключается существенное отличие полевого транзистора от биполярного. Движение носителей заряда вдоль электронно-дырочного перехода (а не через переходы, как в биполярном транзисторе) является второй характерной особенностью полевого транзистора.


П

Рис. 4.15. Форма канала при напряжении на затворе Uзи отс

ри отсутствии напряжения на входе (Uзи = 0) ток Iс, создаваемый этими электро­нами, определяется напряжением стока (Uси) и сопротивле­нием канала, зависящим от его поперечного сечения.

При подаче на переход обратного напряжения Uзи < 0, его ширина равномерно увеличивается, сечение канала уменьшается по всей его длине и сопротивление канала возрастает. Самое низкое сопротивление канала и соответственно самый большой ток через него будет при нулевом напряжении на затворе (Uзи = 0), затем по мере увеличения ширины перехода при возрастании Uзи и соответственно уменьшении сечения канала ток будет падать, и при некотором напряжении на затворе произойдет смыкание переходов, канал полностью перекроется и ток через него перестанет протекать. Это напряжение называется напряжением затвор-исток отсечки (Uзи отс). Канал в этом случае будет иметь вид, показанный на рис. 4.15.


Характеристики птуп

Выходные характеристики транзистора. На рис. 4.16 изображено семейство статических выходных характеристик Iс = f (Uси) при различных значениях напряжения на затворе Uзи.

Каждая характеристика имеет два участка – омический (для малых Uси) и насыщения (для больших Uси). При Uзи= 0 с увеличением напряже­ния Uсток Iсвначале нарастает почти линейно, однако далее характеристика перестает подчиняться закону Ома. Ток Iсначинает расти медленно, ибо его увеличение приводит к повышению падения напряжения в канале и возрастанию потенциала вдоль канала от истока к стоку. Потенциал же затвора одинаков по всей длине.

Появляется разность потенциалов между каналом и затвором, которая увеличивается в сторону стока. Вследствие этого толщина запирающего слоя увеличивается клинообразно (рис. 4.17) и сопротивление канала также увеличивается, а возрастание тока IСзамедляется. При напряжении насыщения Uси нас= Uзи отссечение канала у стока приближается к нулю, и рост тока стока Iспрекращается.

Р

Рис. 4.18. Стоко-затворные характеристики ПТУП

еальные характеристики в области насыщения имеют небольшой наклон. Незначительное увеличение тока стока в режиме насыщения при повышении напряженияUси объясняются некоторым уменьшением эффективной длины канала при расширении перекрытого участка.

Следующая характеристика, снятая при некотором обратном напряжении затвора (U¢зи), когда запирающий слой имеет большую толщину при тех же значениях Uси, будет более пологой на начальном участке, и насыщение наступит раньше, при меньших значениях

си нас = Uзи отс – зи.

Передаточные (стоко-затворные) характеристики (рис. 4.18) представляют собой зависимости тока стока от напряжения на затворе при постоянном напряжении на стоке

Iс = f(Uзи) ׀Uси = const.

Х

Рис. 4.19. Входная характеристика ПТУП

арактер этой зависимости ясен из принципа действия полевого транзистора. Ток стока имеет максимальную величину при отсутствии напряжения на затворе (Uзи = 0), когда толщина канала максимальна. При подаче обратного напряжения на затвор переход расширяется, толщина канала уменьшается, сопротивление возрастает, и ток стока уменьшается. Когда напряжение на затворе достигает величины Uзи отс , канал полностью перекрывается и ток стока падает до минимального значения.