Файл: Проектирование маршрутизации в двух трехуровневых сетях с использованием протокола RIP.pdf

ВУЗ: Не указан

Категория: Курсовая работа

Дисциплина: Не указана

Добавлен: 19.06.2023

Просмотров: 123

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

2. Разработка проектных решений

2.1. Разработка и обоснование структуры сети

Рассматриваемая сеть имеет четыре уровня иерархии. Вся сеть разбивается на три региона. В каждом регионе содержится 50 кампусов, в которых 10 подразделений, на каждое из которых выделяется подсеть. На нижнем уровне иерархии располагаются адреса хостов. В каждом подразделении – не менее 200 хостов.

Для раздачи адресов внутри корпоративной сети будем использовать один из частных диапазонов – 10.0.0.0/8, обладающий наибольшей емкостью адресного пространства – 24 бита.

В соответствии с заданием доступные биты адресов необходимо разделить между 4 уровнями иерархии. На каждый уровень иерархии необходимо выделить такое количество бит, которое достаточно для адресации содержащихся на данном уровне элементов. Биты, принадлежащие одному уровню иерархии, должны идти подряд, более высокие уровни должны располагаться левее более низких. Биты, оставшиеся после выделения каждому уровню минимального числа бит, равномерно распределяются между всеми уровнями для обеспечения возможного дальнейшего роста сети.

Для реализации распределения адресного пространства между различными уровнями используем бесклассовую модель назначения адресов, применяя маски для различных структурных единиц нашей сети.

Исходя из задания рассчитано минимально необходимое число бит, которое требуется отвести под адресацию регионов, кампусов и хостов, а также реально используемое число бит адреса. Итоговое распределение бит между уровнями и максимально возможное количество единиц каждого уровня приведено в таблице 2.

Таблица 2

Распределение бит для адресации подсетей

Уровень

Реальное количество единиц уровня

Выделенное число бит

Максимальное количество единиц уровня

Регионы

3

3

6

Кампусы

50

7

126

Подразделения

10

5

30

Хосты

200

9

510


IP-адрес состоит из 4 байт. В нашем случае 1-й байт, равный 10, отведен под номер сети, следующие 3 бита – под регион, 7 бит – под кампус, 5 бит – под подразделение, последние 9 бит – под номер хоста (рисунок 2).

Рисунок 2. Распределение битов адресного пространства

В таблице 3 указаны номера регионов, соответствующие им двоичные биты в IP-адресе, маски и диапазоны адресов.

Таблица 3

Диапазоны адресов регионов

Номер региона

Код региона

Диапазон IP-адресов региона

Двоичный IP-адрес подсети региона

Маска региона

1 (A)

001

10.32.0.1-10.63.255.254

00001010. 00100000. 0.0

255.224.0.0

2 (B)

010

10.64.0.1-10.95.255.254

00001010. 01000000. 0.0

3 (C)

011

10.96.0.1-10.127.255.254

00001010. 01100000. 0.0

Очевидно, что адреса для каждого кампуса выделяются из диапазона адресов того региона, к которому относится данный кампус. В таблице 4 приведено распределение адресов для кампусов первого региона. В остальных регионах распределение адресов между кампусами производится аналогично.

Таблица 4

Диапазоны адресов кампусов первого региона

Номер кампуса

Код кампуса

Диапазон IP-адресов кампуса

Двоичный IP-адрес подсети кампуса

Маска кампуса

1

0000001

10.32.64.1-10.32.127.254

00001010.00100000.01000000.0

255.255.192.0

2

0000010

10.32.128.110. 32.191.254

00001010.00100000.10000000.0

3

0000011

10. 32.192.1-10. 32.255.255

00001010.00100000.11000000.0

4

0000100

10.33.0.1-10.33.63.254

00001010.00100001.00000000.0

5

0000101

10.33.64.1-10.33.127.254

00001010.00100001.01000000.0

50

0110010

10. 44.128.1-10.44.191.254

00001010.00101100.10000000.0

2.2. Выбор и обоснование используемых протоколов


Появление новой версии протокола IP (IPv6, в настоящее время используется IPv4) обусловлено целым рядом причин. Одна из основных - стремительный рост всемирной сети Интернет. Фундаментальным принципом построения сетей на основе протокола IP, необходимым для правильной маршрутизации и доставки пакетов, является уникальность сетевых адресов, т.е. каждый IP-адрес может принадлежать только одному устройству. На сегодняшний день остались невыделенными около 1 400 000 000 адресов из возможных 4 294 967 296, то есть примерно 30%, чего должно хватить на несколько лет, а может быть и более. Дефицит адресов пока выражается в основном в том, что, по выражению одного из сетевых гуру, адрес класса A не смог бы получить и сам Господь Бог. Таких адресов может существовать всего 128 (формат: 0, адрес сети - 7 бит, адрес хоста - 24 бита), но каждый из них содержит 16 777 216 адресов. Однако появившиеся в последнее время новые устройства для доступа в Интернет и развитие цифрового телевидения, которое собирается превратить каждый телевизор в интернет-устройство, могут быстро исчерпать имеющиеся запасы неиспользованных адресов. Если в компьютерных сетях для выхода в Интернет могут применяться технологии типа NAT (Network Address Translation, — преобразование сетевого адреса), при которой для взаимодействия с окружающей средой используется всего несколько уникальных адресов, предоставляемых, возможно, провайдером, а внутри локальной сети адресация может быть достаточно произвольной, то для сетевого телевизора этот способ не подходит, так как каждому устройству требуется свой уникальный адрес.

Кроме всего прочего, новые возможности предъявляют к протоколам сетевого уровня, каковым является IP, совершенно новые требования в части легкости получения и смены адресов, полностью автоматического конфигурирования (представьте себе домохозяйку, настраивающую DNS своего телевизора). Если новый протокол не появится своевременно, то фирмы-провайдеры начнут внедрять свои собственные, что может привести к невозможности гарантированного соединения «всех со всеми». Открытый протокол, удовлетворяющий требованиям необходимого адресного пространства, легкости конфигурирования и маршрутизации, способный работать совместно с имеющимся IPv4, поможет сохранить способность к соединению между собой любых устройств, поддерживающих IP, при наличии новых возможностей, которые основаны на анализе использования IPv4. Кроме того, остается еще одна проблема: уникальность адреса вовсе не означает, что устройство будет правильно функционировать. Адреса нужны в первую очередь не для того, чтобы «всех пересчитать», а для правильной маршрутизации при доставке пакетов. Таким образом, для беспрепятственного роста Интернета необходимо не только наличие свободных адресов, но и определенная методика их выделения, позволяющая решить проблему масштабируемости. Сведение к минимуму накладных расходов на маршрутизацию является сегодня одной из основных проблем, и ее важность будет возрастать в дальнейшем по мере роста Сети. Просто присвоить устройству адрес недостаточно, необходимо еще обеспечить условия для правильной маршрутизации с минимальными накладными расходами.


В настоящее время только одна известная технология, а именно, иерархическая маршрутизация, позволяет за счет приемлемых технических издержек обеспечить доставку пакетов в сети размерами с Интернет. Технология иерархической маршрутизации заключается в разбиении всей сети на более мелкие подсети, маршрутизация в которых производится самостоятельно. Подсети, в свою очередь, могут разбиваться на еще более мелкие, и т.д. В результате образуется древовидная структура, причем в качестве узлов выступают маршрутизаторы, а в качестве листьев - оконечные устройства-хосты. Путь, который проделывает пакет, передаваемый от одного листа до другого, может быть длиннее, чем при иной топологии, но зато он всегда может быть рассчитан с наименьшими издержками. Некоторую аналогию можно провести с телефонными номерами — первым идет код страны, за ним код города, а затем собственно номер, состоящий, в свою очередь, из кода АТС и собственно номера абонента. История нового протокола восходит к концу 1992 года. Именно тогда IETF (Internet Engineering Task Force — рабочая группа по технической поддержке Интернет) приступила к анализу данных, необходимых для разработки нового протокола IP. К концу 1994 года был утвержден рекомендательный стандарт и разработаны все необходимые для реализации протокола вспомогательные стандарты и документы. IPv6 является новой версией старого протокола, разработанной таким образом, чтобы обеспечить совместимость и «мягкий» переход, не приуроченный к конкретной дате и не требующий одновременных действий всех участников. По некоторым прогнозам, совместное существование двух протоколов будет продолжаться до десяти и более лет. Учитывая то обстоятельство, что среди выделенных типов адресов IPv6 имеется специальный тип адреса, эмулирующий адрес IPv4, можно ожидать относительно спокойного перехода, не сопровождающегося крупными неудобствами и неприятностями. Фактически на одном компьютере могут работать оба протокола, каждый из которых подключается по мере необходимости.

Однако использование старых адресов не является выходом из положения, поэтому протокол IPv6 предусматривает специальные возможности по присвоению новых адресов и их замене без вмешательства (или при минимальном вмешательстве) персонала. Для этого предусмотрена привязка к компьютеру не IP-адреса, а интерфейса. Сам же интерфейс может иметь несколько адресов, принадлежащих к трем категориям: действительный, прошлый, недействительный. При замене адреса «на лету» новый адрес становится действительным, а старый — прошлым. Все вновь осуществляемые соединения производятся при помощи действительного адреса, но уже имеющиеся продолжаются по прошлому адресу. Через некоторое время, которое может быть выбрано достаточно большим, чтобы гарантировать полный разрыв всех соединений по прошлому адресу, он переходит в категорию недействительных. Таким образом, практически гарантируется автоматическая замена адреса без участия персонала. Для полностью гарантированной автоматической замены адреса потребовалось бы внесение изменений в протоколы TCP и UDP, которые не входят в состав IP. Замена адресов осуществляется двумя способами — явным и неявным. Явный способ использует соответствующим образом доработанный протокол DHCP. Неявный способ не требует наличия сервера DHCP, а использует адрес подсети, получаемый от соседей и мостов. В качестве адреса хоста используется просто MAC-адрес хоста, т.е. адрес, используемый на канальном уровне. Этот способ, при всем своем изяществе, по понятным причинам не может присваивать адреса, совместимые с IPv4, и поэтому в переходный период его применение будет ограничено. К сожалению, механизм выделения новых адресов не затрагивает таких аспектов, как обновление базы данных DNS, адресов серверов DNS, конфигурации маршрутизаторов и фильтров, а также тех приложений «клиент-сервер», которые используют привязку к адресу, что делает полную замену адресов локальной сети не менее трудоемким мероприятием, чем при применении IPv4.


Протокол IPv6 предполагает также значительные улучшения при работе в локальной сети. Единый протокол NDP (Neighbor Discovery Protocol - протокол распознавания соседей) заменяет используемые в IPv4 протоколы ARP, ICMP и значительно расширяет их функциональные возможности. Вместо широковещательных пакетов канального уровня протокола ARP используются групповые сообщения (multicast), то есть адресованные всем членам подсети, причем не на канальном, а на сетевом уровне, что должно значительно снизить широковещательный трафик, являющийся бичом локальных сетей Ethernet. Усовершенствованы функции протокола ICMP, что облегчает работу разных подсетей в одном физическом сегменте. Включен механизм распознавания неисправных маршрутизаторов, что позволяет повысить устойчивость к сбоям оборудования. В дополнение к имевшимся ранее двум типам адресации - Unicast и Multicast (доставке уникальному получателю или группе получателей) - добавлен третий, Anycast, при котором осуществляется доставка любому получателю из группы. Существенное отличие нового протокола от старого заключается в том, что длина адресной части составляет 128 бит — в четыре раза больше, чем 32 бита у IPv4. Чтобы представить эту величину, достаточно сказать, что на каждом квадратном метре поверхности суши и моря можно разместить примерно 6,7х1023 адресов. Из заголовка пакета IP изъяты как некоторые неиспользуемые поля, что позволило сократить издержки, связанные с их обработкой, и уменьшить размер заголовка (он длиннее, чем у IPv4, всего в два раза, несмотря на учетверенный размер адресной части).

Рисунок 5-58. Адреса, построенные на основе IPv4: (а) Совместимый; (b) Для устройств, не поддерживающих IPv6

Первым идет четырехбитное поле Version (Версия), его значение равно 6. Следующее поле - Priority (Приоритет) - длиной 8 бит используется для установки приоритета пакета. Приоритет увеличивается с ростом значения этого поля. Значения 0...7 используются для пакетов, время доставки которых не лимитировано, например, значение 1 рекомендуется использовать для новостей, 2 — для почты, 7 — для служебного трафика (SNMP, маршрутизирующие протоколы). Значения 8...15 используются для пакетов, задержка доставки которых нежелательна, например аудио и видео в реальном времени. Далее следует поле Traffic Class, первоначально называвшееся «Flow Label», длиной 20 бит. Оно служит для идентификации последовательности пакетов. Его значение присваивается при помощи генератора случайных чисел и имеет одинаковую величину у всех пакетов данной последовательности. Следующее поле - Payload Length - содержит размер данных, следующих за заголовком, в байтах и имеет длину 16 бит. Следом расположено поле Next Header, идентичное по назначению полю Protocol протокола IPv4 и использующее те же значения. Восьмибитное поле Hop Limit аналогично по назначению полю Time to Live. Оно устанавливается источником согласно разумным предположениям о длине маршрута, а затем уменьшается на 1 при каждом прохождении через маршрутизатор. При снижении значения поля до нуля пакет снимается, как «заблудившийся». Последними идут поля адресов источника и приемника длиной 128 бит (16 байт) каждое. Адреса в стандарте IPv6 имеют более сложную структуру, чем в предыдущем, при этом используются префиксы разной длины. В настоящее время для непосредственного использования предназначено около 15% адресов, остальные 85% зарезервированы для распределения в будущем. Специальные типы адресов предназначаются для более гибкого использования. Provider-Based Unicast Address (Выделяемый провайдером уникальный адрес) служит для глобальной связи. Он состоит из префикса 010, Registry Id, идентифицирующего организацию, зарегистрировавшую провайдера; Provider Id, идентифицирующего провайдера; Subscriber Id, идентифицирующего организацию-клиента, и собственно адреса. Адреса для локального использования (Link Local Use и Site Local Use) предназначены для применения внутри одного сегмента или одной организации, т.е. пакеты с такими адресами не маршрутизируются за границы текущего сегмента или локальной сети соответственно. Они могут быть использованы, например, при автоматическом присвоении адресов. Для выхода в глобальную сеть может быть использована подстановка адресов по типу NAT. Если под заполнители-нули выделено достаточно места, то организация, ранее не имевшая соединения с Интернетом, может легко провести замену адресов на глобальные путем конкатенации REGISTRY.