Файл: Метод ЗАПРОС для построения правил сравнения альтернатив (Сущность управленческого решения).pdf
Добавлен: 28.06.2023
Просмотров: 193
Скачиваний: 3
СОДЕРЖАНИЕ
Сущность управленческого решения
1.1 Управленческое решение и его виды
1.2 Подходы к принятию управленческих решений
2.1 Понятие «модель». Типы моделей
2.2 Процесс построения модели.
3.1 Особый класс задач принятия решений: неструктурированные проблемы с качественными переменными
3.2 Качественная модель лица, принимающего решения
3.2.2 Особенности поведения человека при принятии решений
3.3 Какими должны быть методы анализа неструктурированных проблем
3.4.2 Сравнительные качественные оценки
3.5 Построение решающего правила
3.6 Проверка информации ЛПР на непротиворечивость
3.9 Основные характеристики методов вербального анализа решений
3.10.2 Пример: как оценить проекты.
3.10.3 Выявление предпочтений ЛПР
3.10.5 Преимущества метода ЗАПРОС
Итак, при построении единой шкалы оценок критериев осуществляется проверка предпочтений на непротиворечивость. Возможность соединения нескольких парных шкал в единую шкалу является подтверждением непротиворечивости предпочтений ЛПР.
Вопросы, необходимые для построения единой ЕПШ, составляют весь диалог с ЛПР. Больше информации от ЛПР не требуется. В нашем случае (четыре критерия) ЛПР должен ответить на 24 вопроса (если он отвечает непротиворечиво). По опыту использования системы ЗАПРОС известно, что этот диалог занимает 10–15 мин.
Частный случай
При N=2 понятие опорной ситуации не существует. Вместо построения ЕПШ осуществляются сравнения понижений качества от лучших оценок и сравнения всех повышений качества от худших оценок. Полученные результаты (если они непротиворечивы) непосредственно используются для сравнения альтернатив, имеющих оценки по двум критериям.
Психологическая корректность процедуры выявления предпочтений ЛПР
Процедура выявления предпочтений ЛПР в методе ЗАПРОС является корректной с психологической точки зрения. Ее проверка производилась неоднократно в различных экспериментах [13]. Каждый из испытуемых был поставлен в положение ЛПР, объекты оценивались по нескольким критериям с качественными шкалами. Проверка по группе испытуемых показала, что при пяти критериях они допускали не более одного–двух противоречивых ответа из 30–40 (для одной опорной ситуации). Данная замкнутая процедура выявления предпочтений и построения единой шкалы оценок критериев неоднократно проверялась в экспериментах и на практике (при работе с ЛПР).
Информация, получаемая от ЛПР, была почти всегда непротиворечива. Так, при опросе разных ЛПР по четырем критериям с 3–5 оценками на шкалах не наблюдалось ни одного нарушения транзитивности. При опросе по шести и семи критериям с 3–6 оценками на шкалах наблюдались 1–3 противоречивых ответа из 50–70. Повторный опрос ЛПР позволил сразу же устранить эти противоречия. Можно предположить, что при 3–4 оценках на шкалах критериев небольшое число противоречий сохранится до N=10.
3.10.4 Сравнение альтернатив
Рассмотрим сравнение двух альтернатив
Упорядоченность оценок на парной ЕПШ либо определяется посредством попарных сравнений, осуществляемых ЛПР, либо получается в результате транзитивного распространения, следующего из порядковых шкал критериев.
Действительно, в тех случаях, когда оценки не были сравнены непосредственно ЛПР, их положение на ЕПШ определяется:
- либо упорядочением оценок на шкалах критериев, если они принадлежат одной шкале;
- либо транзитивным распространением результатов сравнения ЛПР на основе упорядоченных оценок на шкалах критериев.
Обратимся к примеру: ЕПШ для критериев А и Б. Оценки А2 и Б2 сравнивались ЛПР. Превосходство оценки А2 над оценкой Б3 следует из превосходства Б2 над Б3 (порядковая шкала).
Упорядоченность оценок на общей ЕПШ следует либо из прямых сравнений ЛПР, либо из свойства упорядочения оценок на шкалах критериев.
Введем функцию качества альтернативы V(yi) и сделаем следующие предположения относительно свойств этой функции:
- существуют максимальное и минимальное значения V(yi);
- при независимых критериях значение V(yi) возрастает с улучшением оценок по каждому из критериев.
Присвоим каждой оценке на единой ЕПШ ранг, начиная с лучших оценок. Так, для ЕПШ в приведенном выше примере сочетанию лучших оценок соответствует ранг 1, оценке Б2 –ранг 2, оценке F2 – ранг 3 и т.д.
Рассмотрим две альтернативы: yi и yj, представленные в виде векторов оценок по критериям. Можно определить ранги для всех компонентов векторов yi и yj.
Упорядочим ранги компонентов (оценок по критериям) альтернатив от лучших к худшим. Тогда каждой альтернативе можно поставить в соответствие вектор рангов оценок на ЕПШ, причем качество альтернативы определяется этим вектором:
V(yi) = V(ri, rj, rk, …, r1 )
V(yj) = V(qs, qt, qu, …, qf ) , (7)
гдеri, rj, rk, …, r1 – ранги оценок альтернативы yi на ЕПШ; qs, qt, qu, …, qf – ранги оценок альтернативы yj на ЕПШ.
Если условие независимости по понижению качества выполнено для всех пар критериев и ранги оценок альтернативы yi, следующие из ЕПШ, не больше, чем ранги оценок для yj, а ранг хотя бы одной оценки меньше, то альтернатива yi в соответствии с предпочтениями ЛПР превосходит альтернативу yj: V (yi) > V (yj).
Альтернатива yi эквивалентна альтернативе yj, если их оценки в соответствии с ЕПШ имеют одинаковые ранги.
Во всех случаях, когда не выполняются условия превосходства одной альтернативы над другой или их эквивалентности, альтернативы yi и yj несравнимы.
Следовательно, попарное сравнение упорядоченных по ЕПШ оценок дает возможность непосредственно по информации ЛПР сделать вывод о превосходстве одной альтернативы над другой либо об их эквивалентности. Если информации ЛПР недостаточно, то альтернативы несравнимы.
Следует отметить, что единая порядковая шкала не всегда позволяет сравнивать проекты. Так, проекты с оценками А3 Б2 В3 Г2 и А2 Б3 В2 Г3 не сравнимы, так как Б2 лучше А2 и В3 лучше Г3, но Б2 лучше Г2 и Б3 лучше А3.
3.10.5 Преимущества метода ЗАПРОС
Преимущества метода ЗАПРОС заключаются в следующем:
- все вопросы просты и понятны для ЛПР, они сформулированы на языке оценок критериев;
- отвечая на вопросы, ЛПР должен быть логичным и последовательным, компьютер проверяет его предпочтения на непротиворечивость;
- любые сравнения качества альтернатив могут быть объяснены на этом же языке.
3.10.6 Практическое применение метода ЗАПРОС
Метод ЗАПРОС неоднократно применялся при решении практических задач. Одной из наиболее важных была задача формирования пятилетнего плана прикладных научных исследований и разработок [16]. Число оцениваемых проектов составляло от нескольких сотен до нескольких тысяч. Была разработана анкета для экспертов, включающая восемь критериев с вербальными порядковыми шкалами: масштаб проекта, новизна ожидаемых результатов, квалификация исполнителя и т.д. Разработанное решающее правило использовалось для упорядочения проектов и отбора лучших.
Проверка прогностических возможностей метода ЗАПРОС была осуществлена по результатам выполнения пятилетнего плана НИР для 750 проектов. Частичный порядок, построенный на этапе планирования, был использован для разделения принятых проектов на три группы по их качеству. Оценка качества выполненных проектов также проводилась с помощью метода ЗАПРОС, но использовались уже другие критерии. Выполненные проекты также были разделены на три группы по их качеству. Анализ показал, что на множестве из 750 проектов была корреляция 82% между оценками на этапе планирования и оценками выполненных проектов [17], что можно считать хорошим результатом при пятилетнем сроке выполнения проектов.
В [18] проводилось сравнение трех систем поддержки принятия решений (СППР): DECAID [19], Logical Decision [20] и ЗАПРОС. Две первые системы основаны на многокритериальной теории полезности – MAUT . Прежде всего следует заметить, что эти две СППР очень близки друг к другу по выходу: обе они направлены на получение количественной оценки полезности для любой альтернативы. Обе они используют аддитивное представление полезности в виде взвешенной суммы оценок критериев:
где U(x) - полезность многокритериальной альтернативы; wi – количественный вес i-гo критерия; Ui(xi) – полезность оценки по i-му критерию.
Две СППР различаются способом выявления весов и построения функций полезности по отдельным критериям. СППР Logical Decision ( LD ) следует полностью основной схеме MAUT . Это значит, что веса определяются путем нахождения точек безразличия на плоскостях пар критериев, а однокритериальные функции полезности строятся путем сравнения лотерей. В СППР DECAID (D) веса назначаются ЛПР непосредственно путем указания на экране дисплея отрезков на линиях, соответствующих важности критериев. Также графическим путем устанавливаются полезности каждой альтернативы по отдельному критерию.
В эксперименте группа испытуемых (студентов американского университета «Texas A and M») оценивала пять альтернатив, представлявших собой описание различных мест работы. Альтернативы имели оценки по четырем критериям: зарплата, местоположение, предлагаемая должность, возможность повышения. Первичные оценки были даны в виде словесных определений кроме зарплаты. В результате эксперимента оказалось возможным сравнивать совпадение ответов испытуемых по упорядочению пяти альтернатив, по количественным весам критериев и оценкам альтернатив, полученным с помощью LD и D .
Анализ показал, что при использовании первых двух СППР группа испытуемых давала разные оценки полезности альтернатив. Были существенные различия в количественных весах критериев и оценках альтернатив по критериям. Для группы в целом только по одному критерию (предлагаемая должность) оценки важности были достаточно близки. Лишь для одного критерия (местоположение) были достаточно близки оценки альтернатив. В целом корреляция результатов двух СППР не была статистически значимой.
Особый интерес представляло сравнение LD и D с СППР ЗАПРОС( Z ). Первичное словесное описание оценок альтернатив в виде трех упорядоченных оценок на шкалах по трем критериям и три уровня оценки зарплаты использовались СППР ЗАПРОС для выявления предпочтений. Сравнение худших оценок по критериям с помощью ЕПШ позволило получить упорядочения критериев по важности. С помощью ЕПШ сравнивались пять заданных альтернатив.
Следует напомнить, что СППР ЗАПРОС не позволяет строго ранжировать альтернативы; некоторые из них могут оказаться несравнимыми, так как информации ЛПР недостаточно для их сравнения. Поэтому сравнивать LD и Z, D и Z можно лишь для тех альтернатив, отношения между которыми можно было выявить системой Z . Оказалось, что для этих альтернатив корреляция результатов для пар LD – Z и D – Z статистически значима.
Что же следует из сравнения трех СППР? Причина несовпадения результатов, полученных с помощью LD и D, заключается, вероятнее всего, в большой чувствительности методов MAUT к неизбежным человеческим ошибкам. СППР ЗАПРОС мало чувствительна к этим ошибкам. Поэтому отношения между альтернативами, построенные методом ЗАПРОС, намного надежнее.
Как известно, любой прибор имеет определенную точность измерения. По аналогии с этим можно утверждать, что возможности человека производить точные количественные измерения ограничены. Человек не может быть уподоблен точным весам, стрелка которых указывает на количественное значение полезности, веса критерия, оценки альтернативы, вероятности. Нет, эти «весы» имеют существенные дефекты. Поэтому методы, полагающиеся на количественные оценки ЛПР, крайне чувствительны даже к небольшим человеческим ошибкам. Небольшое отличие в измерении весов критериев – и результат применения метода совсем иной.
При этом возникает вопрос: что лучше – иметь ли точный выход СППР (количественные оценки, строгое ранжирование), хотя и весьма ненадежный, или иметь приближенный выход (разбиение альтернатив на классы, частичное ранжирование), но надежный и проверенный? Представляется, что второй вариант явно предпочтительнее. Его преимущество становится очевидным на практике, в ответственных реальных задачах, для решения которых и создаются СППР.
Заключение
Анализ и использование научных публикаций и материалов, указанных в Списке использованной литературы, позволил сделать следующие выводы по результатам настоящей работы.
1. Вербальный анализ решений предназначен для исследования неструктурированных проблем, имеющих качественное, словесное описание.
2. Методы вербального анализа решений позволяют сохранить качественное описание проблемы на всех этапах ее анализа . В них применяются качественные способы измерений и порядковые шкалы оценок по критериям. Для построения решающего правила используют психологически корректные операции получения информации от ЛПР. Полученная информация проверяется на непротиворечивость . Методы вербального анализа решений позволяют ЛПР постепенно формировать решающее правило .
3. Одним из проверенных практикой методов вербального анализа решений является ЗАПРОС, который позволяет строить частичный порядок на множестве многокритериальных альтернатив. Метод устойчив к возможным неточностям в оценках альтернатив и к возможным ошибкам ЛПР.