Файл: Колледж ивгпу дневник по ознакомительнойпрактике.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 11.01.2024

Просмотров: 69

Скачиваний: 3

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

СОДЕРЖАНИЕ

Организация производства радиоэлектронной техники

Элементы и узлы радиоэлектронной аппаратуры цифровой и импульсной техники

Выполнение электромонтажных работ Различные по форме (следовательно, и по назначению) сигналы характеризуются разнообразными параметрами. К числу наиболее известных и подлежащих измерению параметров относятся рассмотренные ранее напряжение, сила тока и мощность. К важным параметрам относятся также частота и связанные с ней период и длина волны электромагнитных колебаний, фазовый сдвиг, временные интервалы, коэффициент нелинейных искажений и ряд специфических параметров, характерных для модулированных сигналов и сигналов СВЧ- устройств. Измерение этих параметров выполняется с помощью соответствующих приборов (частотомеров, фазометров, измерителей нелинейных искажений, измерителей АЧХ) и связано с решением многих научных и практических задач.Измерение частоты и периода повторения сигналаОсновной единицей измерения частоты сигнала является герц, но ввиду его малости в электронике используют кратные единицы: • килогерц (1 кГц = 103 Гц); • мегагерц (1 МГц = 106 Гц); • гигагерц (1 ГГц = 109 Гц). Частота сигнала измеряется электронными и электромеханическими частотомерами.В каталоговой классификации электронные частотомеры обозначаются следующим образом: 41 — образцовые (стандарты частоты и времени), 42 — резонансные, 43 — электронные, 44 — гетеродинные волномеры (сняты с производства), 45 — преобразователи частоты, 46 — синтезаторы, делители, умножители частоты.Электромеханические частотомеры независимо от используемой системы преобразования обозначаются по единице измерения — Гц (международное обозначение — Hz).В практике электротехнических измерений в большинстве случаев измеряют линейную частоту, которую исторически в радиоэлектронике обозначают буквой / (высокие частоты) или буквой F (низкие частоты). Гармонические сигналы характеризуются также угловой (круговой) частотой со: Угловая частота равна изменению фазы сигнала ф(?) в единицу времени. Для низких частот угловая частота записывается как Q = 2лТ, для высоких — как со = 2л/.При непостоянстве частоты используется понятие мгновенной угловой частоты: где f(t) — мгновенная циклическая частота.При описании методов измерения частоты будем подразумевать ее среднее значение за время измерения.Под линейной частотой понимают число колебаний в единицу времени Наряду с частотой на ВЧ и СВЧ часто используют длину волны электромагнитных колебаний X, которая связана с линейной частотой зависимостью где с — скорость света: с = 3 • 108 м/с.Реже измеряют период электромагнитных колебаний Т, связанный с линейной частотой обратной зависимостью: Таким образом, параметры F, Т и X связаны между собой и при необходимости можно измерить любой из них.Приборы, измеряющие частоту сигнала, называются частотомерами, длину волны — волномерами, период — периодомерами.Так как все три параметра электрических сигналов являются важнейшими в электронных и телекоммуникационных системах, то приборы, используемые для частотно-временных измерений, образуют единый комплекс аппаратуры, позволяющей проводить измерения с непосредственной их привязкой к Государственному эталону частоты и времени, что гарантирует высокую точность измерений.Наряду с названными в соответствии с каталоговой классификацией приборами, частоту можно измерять осциллографическими (косвенными) методами, которые были рассмотрены ранее.Спектр частот электромагнитных колебаний, используемый в электронике, простирается от долей герца до десятков гигагерц. Этот спектр условно можно разделить на два диапазона: • низкие частоты, к которым относятся инфразвуковые — ниже 20 Гц, звуковые — 20 Гц ... 20 кГц, ультразвуковые — 20 ... 200 кГц; • высокие частоты, к которым относятся собственно высокие — 200 кГц ... 30 МГц, ультра- или сверхвысокие — выше 30 МГц. В зависимости от участка спектра частот электромагнитных колебаний применяются различные методы измерения, которые подразделяются на низко- и высокочастотные. Приборы для измерения низких и высоких частот также называются низко- и высокочастотными.При измерении низких (промышленных) частот (до 1000 Гц) широко используются электромеханические частотомеры на основе электромагнитной, электродинамической, ферродинамической, выпрямительной, вибрационной систем.Электромеханические частотомеры имеют малые габаритные размеры, не требуют источников питания, недороги, однако имеют существенный недостаток — ограниченный диапазон измерения частот, поэтому используются в основном как контролирующие приборы.Для измерения низких частот применяют осциллографические методы (методы сравнения), используемые чаще для градуировки шкал генераторов различных измерительных приборов. При реализации этого метода требуется генератор образцовой частоты более высокой точности и осциллограф. К осциллографическим методам относятся метод фигур Лиссажу, метод яркостной модуляции и метод использования калиброванной линейной развертки осциллографа. Все названные методы рассмотрены достаточно подробно ранее. Погрешность измерения третьим методом зависит от нелинейности развертывающего напряжения, а также от погрешности отсчета линейных размеров периода и качества фокусировки и яркости луча на экране осциллографа.В настоящие время для измерения низких частот широко используются электронные цифровые частотомеры (43), практически вытеснившие конденсаторные частотомеры.Цифровые частотомеры, в основу измерения которыми положен метод дискретного счета, характеризуются очевидными достоинствами: • высокой точностью измерений, т.е. малой относительной погрешностью измерения частоты (106...109);

Продолжительность производственного цикла зависит от времени трудовых и естественных процессов, а также от времени перерывов в производственном процессе (рис. 2).

В течение трудовых процессов выполняются технологические и нетехнологические операции. К технологическим относятся операции, в результате которых изменяются внешний вид и внутреннее содержание предметов труда, а также подготовительно - заключительные работы. Их продолжительность зависит от типа производства, его технической оснащенности, прогрессивности технологии, приемов и методов труда и других факторов. Время выполнения технологических операций в производственном цикле составляет технологический цикл (Тц). Время выполнения одной операции, в течение которого изготавливается одна деталь, партия одинаковых деталей или несколько различных деталей, называется операционным циклом (Топ). К нетехнологическим относятся операции по транспортировке предметов труда и контролю качества продукции. Естественными считаются такие процессы, которые связаны с охлаждением деталей после термообработки, с сушкой после окраски деталей или других видов покрытия и со старением металла.

Перерывы в зависимости от вызвавших их причин могут быть подразделены на межоперационные (внутрицикловые), межцеховые и междусменные. Межоперационные перерывы обусловлены временем партионности и ожидания и зависят от характера обработки партии деталей на операциях. Перерывы партионности происходят потому, что каждая деталь, поступая на рабочее место в составе партии аналогичных деталей, пролеживает один раз до начала обработки, а второй раз по окончании обработки, пока вся партия не пройдет через данную операцию. Перерывы ожидания вызываются несогласованной продолжительностью смежных операций технологического процесса. Эти перерывы возникают в тех случаях, когда предыдущая операция заканчивается раньше, чем освобождается рабочее место, предназначенное для выполнения следующей операции.

Межцеховые перерывы обусловлены тем, что сроки окончания производства составных частей деталей сборочных единиц в разных цехах различны и детали пролеживают в ожидании комплектности. Это пролеживание (перерывы комплектования) происходит при комплектно-узловой системе планирования, т. е. тогда, когда готовые заготовки, детали или узлы должны «пролеживать» в связи с незаконченностью других заготовок, деталей, узлов, входящих совместно с первыми в один комплект. Как правило, такие перерывы возникают при переходе продукции от одной стадии производства к другой или из одного цеха в другой. Междусменные перерывы обусловлены режимом работы предприятия и его подразделений. К ним
относятся выходные и праздничные дни, перерывы между сменами и обеденные перерывы.

Структура и продолжительность производственного цикла зависят от типа производства и уровня организации производственного процесса. Для изделий РЭА характерна высокая доля технологических операций в общей продолжительности производственного цикла. Сокращение времени трудовых процессов в части операционных циклов достигается путем совершенствования технологических процессов, а также повышения технологичности конструкции изделия, под которой понимают максимальное приближение конструкционных особенностей изделия к способам реализации этих особенностей в производстве.

Продолжительность транспортных операций может быть уменьшена механизацией и автоматизацией подъема и перемещения продукции. Наладку оборудования необходимо выполнять в нерабочие смены и в перерывы. Продолжительность естественных процессов уменьшается за счет замены их технологическими операциями. Например, естественная сушка окрашенных деталей может быть заменена индукционной сушкой поле токов высокой частоты с ускорением процесса в 5-7 раз.

Время межоперационных перерывов может быть уменьшено в результате перехода от последовательного к последовательно-параллельному и параллельному виду движений предметов труда. Оно может быть сокращено за счет организации цехов и участков предметной специализации.

Производственная структура предприятия. В соответствии со структурой производственного процесса на любом предприятии радиоэлектронного приборостроения различают основные, вспомогательные и побочные цехи и обслуживающие хозяйства.

Цех – подразделение предприятия, состоящее из производственных и вспомогательных участков. Цех выполняет определенные производственные функции, обусловленные характером кооперации труда внутри предприятия. На большинстве промышленных предприятий цех является основной структурной единицей. Часть мелких и средних предприятий может быть построена по бесцеховой структуре, с делением на производственные участки.

К цехам основного производства относятся цехи, изготовляющие основную продукцию предприятия: заготовительные (литейные, кузнечно-прессовые и др.), обрабатывающие (механической обработки деталей, холодной штамповки, термические, гальванические, и др.), - сборочные (узловой и генеральной сборки, монтажные, регулировочно-настроечные и др.). К вспомогательным относятся цехи обслуживания основных цехов: оснащают их инструментом и приспособлениями, обеспечивают запасными частями для ремонта оборудования и проводят плановые ремонты, обеспечивают энергетическими ресурсами. Важнейшими из этих цехов являются инструментальные, ремонтно-механические, ремонтно - строительные, и др. Подсобные цехи осуществляют подготовку материалов для основных цехов, а также изготовляют тару для упаковки продукции. Кроме цехов, крупные предприятия имеют также обслуживающие хозяйства: складское, транспортное, и пр.



Объемом и номенклатура выпуска продукции имеют решающее влияние на производственную структуру предприятия. Чем больше объем выпуска продукции, тем, как правило, уже специализация цехов. Чем уже номенклатура продукции, тем проще структура предприятия. Формы специализации производственных подразделений определяют конкретный состав технологически и предметно специализированных цехов, участков предприятия, их размещение и производственные связи между ними. Экономически целесообразные формы кооперирования предприятия с другими предприятиями позволяют также реализовывать часть производственных процессов вне данного предприятия.

Структура предприятия должна обеспечивать рациональное и эффективное сочетание всех звеньев производственного процесса. Многообразие производственных структур приборостроительных предприятий в зависимости от их специализации можно свести к следующим типам:

- с полным технологическим циклом, располагающие всей совокупностью заготовительных, обрабатывающих и сборочных цехов;

- сборочного типа, выпускающие готовые изделия из деталей и комплектующих, изготовляемых на других предприятиях;

- специализированные на производстве заготовок, как правило, на принципах технологической специализации;

- подетальной специализации, производящие отдельные детали, блоки, узлы, сборочные единицы.

Формы специализации цехов предприятий радиоэлектронного приборостроения зависят от стадий производства, а именно: заготовительной, обрабатывающей и сборочной. Соответственно специализация принимает следующие формы: технологическую, предметную или предметно-технологическую.

При технологической форме в цехах выполняется определенная часть технологического процесса из однотипных операций при широкой номенклатуре обрабатываемых деталей. Примером цехов технологической специализации могут служить гальванические, механообрабатывающие, сборочные. Технологическая форма обеспечивает большую гибкость производства при освоении выпуска новых изделий и расширении изготавливаемой номенклатуры без существенного изменения уже применяемых оборудования и технологических процессов. По технологическому принципу формируются цехи на предприятиях единичного и мелкосерийного производства. По мере развития специализации производства, а также стандартизации и унификации изделий и их частей технологический принцип, как правило, дополняется предметным.


Предметная форма специализации цехов характерна для заводов узкой предметной специализации. В цехах полностью изготовляются закрепленные за ними детали или изделия узкой номенклатуры, например одно изделие, несколько однородных изделий или конструктивно - технологически однородных деталей. Для цехов с предметной специализацией характерны разнообразные оборудование и оснастка, но узкая номенклатура деталей или изделий. Создание цехов, специализированных на выпуске ограниченной номенклатуры изделий, целесообразно лишь при больших объемах их выпуска. В цехах создается возможность осуществлять замкнутый (законченный) цикл производства. Такие цехи получили название предметно-замкнутых. В них иногда совмещаются заготовительная и обрабатывающая или обрабатывающая и сборочная стадии (например, механосборочный цех).

Технологическая и предметная формы специализации в чистом виде используются довольно редко. Чаще всего на многих предприятиях радиоэлектронного приборостроения применяют смешанную (предметно-технологическую) специализацию, при которой заготовительные цехи строятся по технологической форме, а обрабатывающие и сборочные цехи объединяются в предметно-замкнутые цехи или участки.

В основу формирования производственных участков в цехах может быть положена технологическая или предметная форма специализации. При технологической специализации участки оснащаются однородным оборудованием для выполнения определенных операций. Так, механический цех может включать токарный, фрезерный, револьверный, сверлильный и другие участки. При предметной форме специализации цех разбивается на предметно-замкнутые участки, каждый из которых специализирован на выпуске относительно узкой номенклатуры изделий и реализует законченный цикл их изготовления. Организация предметно - замкнутых участков обусловливает почти полное отсутствие производственных связей между участками, обеспечивает экономическую целесообразность использования высокопроизводительного специализированного оборудования и технологической оснастки, позволяет получать минимальную продолжительность производственного цикла изготовления деталей, упрощает управление производством внутри цеха.


Элементы и узлы радиоэлектронной аппаратуры цифровой и импульсной техники


Подобно тому как самые различные здания сейчас строят из нескольких основных типов панелей и блоков, разные радиоэлектронные аппараты собираются из некоторого набора стандартных узлов и деталей.

В этом случае главные «строительные бло­ки» — это почти всегда электронные приборы, например лампы, а самая массовая деталь — сопротивление. Его главная задача (об этом говорит само название) — оказывать сопро­тивление переменному току, поглощать излиш­ки энергии, устанавливать заданные режимы. Наряду с постоянными имеются и переменные сопротивления, величину которых можно плав­но изменять.

Вообще же в электронной аппаратуре встре­чаются сопротивления самой различной вели­чины — доли ома, десятки килоом (1 ком=1000 ом) и даже сотни тысяч мегом (1 Мом=1 млн. ом). Сопротивления (сокращенно обозна­чаются буквой R) могут быть рассчитаны на разные мощности — от долей ватта до не­скольких десятков ватт.

Распространенная деталь — конденса­тор (сокращенно обозначается буквой С). Он вы­полняет различные функции, например накапли­вает электрические заряды, разделяет постоян­ную и переменную составляющие сложного тока (постоянная составляющая не проходит через конденсатор, а переменная проходит). Главные детали конденсатора — металлические пласти­ны или комплект пластин, между которыми расположен тонкий слой изолятора. Пластины (на них и происходит накопление зарядов) дела­ют в виде дисков, цилиндров или длинных, свернутых в спираль полос фольги.

О способности конденсатора накапливать заряды говорит его электрическая емкость, измеряемая в фарадах. Фарада — величина чрезвычайно большая и на практике не встре­чается никогда. Распространенные типы кон­денсаторов имеют емкость от нескольких пикофарад (триллионная доля фарады; 1 пф=10-12ф) до нескольких сотен микрофарад (миллионная доля фарады; 1 мкф=10-6ф=106 пф). Большую емкость имеют электролитические конденсато­ры, где накопление зарядов происходит в ре­зультате сложных физико-химических процес­сов. В ряде случаев применяют конденсаторы переменной емкости