Файл: Ufimtsev P. Fundamentals of the physical theory of diffraction (Wiley 2007)(348s) PEo .pdf
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 28.06.2024
Просмотров: 969
Скачиваний: 0
118 Chapter 6 Axially Symmetric Scattering of Acoustic Waves at Bodies of Revolution
In view of the above comments, the scattered field (1.16–1.17) can be represented in this form:
1 |
eikR |
|
ξeff |
|
||
us(1) = −u0 |
|
|
|
|
Js(1)(kξ , ϕ0)eikξ cos ω cos ϑ (a − ξ sin ω)dξ |
|
4π |
|
R |
0 |
2π |
|
|
|
× 0 |
e−ik −(ψ |
,ψ ) dψ |
+ |
2π
× e−ik +(ψ ,ψ ) dψ ,
ξeff
Js(1)(kξ , α − ϕ0)e−ikξ cos cos ϑ (a − ξ sin )dξ
0
(6.8)
0
uh(1) = −u0 |
ik eikR |
|
|
|
|
|||||
4π |
|
R |
|
|
|
|
|
|||
× |
|
ξeff |
2π |
|
|
|||||
0 |
Jh(1)(kξ , ϕ0)eikξ cos ω cos ϑ (a − ξ sin ω)dξ |
0 |
e−ik −(ψ |
,ψ )(mˆ |
· nˆ )− dψ |
|||||
+ |
ξeff |
Jh(1)(kξ , α − ϕ0)e−ikξ cos cos ϑ (a − ξ sin )dξ |
|
|
||||||
0 |
|
|
|
|||||||
|
2π |
e−ik +(ψ ,ψ )(mˆ · nˆ )+ dψ , |
|
|
|
|
||||
× |
0 |
|
|
|
|
(6.9) |
||||
where |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
−(ψ , ψ ) = (a − ξ sin ω) sin ϑ cos(ψ − ψ ) |
|
|
|||
and |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+(ψ , ψ ) = (a − ξ sin ) sin ϑ cos(ψ − ψ ). |
|
(6.10) |
The first integrals in the brackets of Equations (6.8) and (6.9) relate to the illuminated surface (z < 0), and the second integrals relate to the shadowed surface (z > 0). These integrals are calculated over the interval 0 ≤ ξ ≤ ξeff , as the nonuniform sources Js,h(1)(kξ ) decrease with increasing ξ and can be neglected at a certain distance ξ > ξeff from the edge. In the next sections we present the asymptotic estimates for the scattered field.
6.1.2Ray Asymptotics
First we investigate the field in the observation points, which are visible from all edge points (0 ≤ ψ ≤ 2π ). This happens for the two intervals of the observation directions: 0 ≤ ϑ ≤ and π − ω ≤ ϑ ≤ π . We assume that
k(a − ξeff sin ω) sin ϑ |
1 |
|
and |
|
|
k(a − ξeff sin ) sin ϑ |
1 |
(6.11) |
TEAM LinG
6.1 Diffraction at a Canonical Conic Surface 119
and apply the stationary phase technique (Copson, 1965; Murray, 1984) to the integrals over the variable ψ . The stationary points ψ1,2 are found from the condition
|
|
|
d ±(ψ , ψ ) |
= 0 |
|
|
|
|
(6.12) |
|||||
|
|
|
|
dψ |
|
|
|
|
|
|
||||
which leads to the equation |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
d cos(ψ − ψ ) |
= − |
sin(ψ |
− |
ψ ) |
= |
0, |
at ψ |
= |
ψ |
. |
(6.13) |
||
|
dψ |
|||||||||||||
|
|
|
|
|
|
|
st |
|
||||||
In the interval 0 ≤ ψ ≤ 2π , two stationary points exist: |
|
|
|
|
|
|||||||||
|
ψ1 = ψ |
|
and |
|
|
ψ2 = π + ψ . |
|
|
|
(6.14) |
In accordance with this asymptotic method, the function cos(ψ − ψ ) contained in± is approximated by
cos(ψ − ψ ) ≈ 1 − |
|
1 |
(ψ |
− ψ1)2 |
in the vicinity of the point ψ = ψ1 (6.15) |
||
2 |
|||||||
and |
|
|
|
|
|
|
|
cos(ψ − ψ ) ≈ −1 + |
1 |
(ψ − ψ2)2 |
in the vicinity of the point ψ = ψ2. |
||||
|
|||||||
2 |
|||||||
The slowly varying factor (m |
|
(6.16) |
|||||
n)± is approximated by its value at the stationary points. |
|||||||
|
|
|
|
ˆ |
· ˆ |
|
The initial integral over the variable ψ asymptotically equals the sum of two integrals calculated in the vicinity of each stationary point. The intervals of integration in these integrals are extended from −∞ to +∞. These standard manipulations lead to the asymptotic expression
2π
e−ik
0
where
(mˆ · nˆ )+
(mˆ · nˆ )+
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
±(ψ ,ψ )(mˆ · nˆ )±dψ |
|
|
|
|
|
|
|
2π |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
3 |
|
|
|
− |
|
|
|
ω |
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
|
a |
|
ξ sin |
|
|
|
|
sin ϑ |
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
3k |
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
−ik a−ξ sin ω sin ϑ |
|
|
i π |
||||||||
|
|
|
|
|
|
× |
ˆ · ˆ |
|
|
|
= 1 · |
|
|
|
|
|
|
|
|
|
· |
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
(m |
n)± |
|
|
|
|
e |
|
|
|
|
|
|
|
|
|
e 4 |
||||||
|
|
|
|
|
|
|
ψ ψ |
|
|
|
|
|
|
|
|
|
|
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
eik a−ξ sin ω sin ϑ |
|
|
|
|
|
|||||||||
|
|
|
|
|
|
(m n)± ψ |
|
ψ |
2 |
· |
· |
e−i π4 |
|||||||||||||||||
|
|
|
|
|
|
+ ˆ · ˆ |
|
|
= |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(6.17) |
|
ψ =ψ1 |
= sin(ϑ + ), |
(mˆ · nˆ)− ψ =ψ1 |
= sin(ϑ − ω), |
|
|
|
|
(6.18) |
|||||||||||||||||||||
|
= |
= − |
|
− |
|
|
|
|
|
ˆ · ˆ |
|
|
|
|
= |
|
= − |
|
+ |
|
|
|
|
|
|
||||
|
ψ2 |
|
sin(ϑ |
|
), |
|
|
|
(m n)− |
|
ψ |
ψ2 sin(ϑ |
|
ω). |
|
|
|
||||||||||||
ψ |
|
|
|
|
|
|
|
|
|
|
TEAM LinG
120 Chapter 6 Axially Symmetric Scattering of Acoustic Waves at Bodies of Revolution
Equation (6.17) allows one to reduce Equations (6.8) and (6.9) to single integrals over
the variable ξ . These integrals will contain the factors √a − ξ sin ω and √a − ξ sin ,
√
which can be approximated to a under the condition a ξeff .
Before we present the resulting expressions for Equations (6.8) and (6.9), we introduce the local polar coordinates ϕ1 and ϕ2 at the stationary points ψ1 and ψ2. In Figure 6.2 these points are denoted as 1 and 2. The local coordinates are shown in Figure 6.3 for point 1 and in Figures 6.4 and 6.5 for point 2.
Figure 6.3 Local polar coordinates at the stationary point 1 (ψst = ψ ).
Figure 6.4 Local coordinates at the stationary point 2 (ψst = π + ψ ) for the observation directions in the interval π − ω ≤ ϑ ≤ π .
Figure 6.5 Local coordinates at the stationary point 2 (ψst = π + ψ ) for the observation directions in the interval 0 ≤ ϑ ≤ .
TEAM LinG
6.1 Diffraction at a Canonical Conic Surface 121
Considering the above relationships between coordinates ϕ1, ϕ2, and ϑ , and utilizing Equation (6.17), one can obtain the following approximations for Equations (6.8) and (6.9):
|
|
|
|
a |
|
|
eikR |
π |
ξeff |
|
us(1) = −u0 |
2√ |
|
|
|
+e−ika sin ϑ +i 4 |
|
Js(1)(kξ , ϕ0)e−ikξ |
|||
R |
|
|||||||||
2π ka sin ϑ |
|
0 |
||||||||
+ |
ξeff |
Js(1)(kξ , α − ϕ0)e−ikξ cos(α−ϕ1) dξ |
|
|||||||
0 |
|
|
||||||||
|
|
|
|
|
ξeff |
|
|
|
|
|
+ eika sin ϑ −i π4 |
0 |
|
Js(1)(kξ , ϕ0)e−ikξ cos ϕ2 dξ |
|||||||
+ |
0 |
Js(1)(kξ , α − ϕ0)e−ikξ cos(α−ϕ2) dξ , |
|
|||||||
|
ξeff |
|
|
|
|
|
|
|
|
cos ϕ1 dξ
(6.19)
uh(1) = −u0 |
2√ |
ika |
|
|
|
|
|
eikR |
|
|
|
||
|
|
|
R |
|
|
|
|
|
|||||
2π ka sin ϑ |
|
|
|
|
|
|
|||||||
× +e−ika sin ϑ +i π4 |
sin ϕ1 |
ξeff |
Jh(1)(kξ , ϕ0)e−ikξ cos ϕ1 dξ |
|
|||||||||
0 |
|
||||||||||||
+ sin(α − ϕ1) |
ξeff |
Jh(1)(kξ , α − ϕ0)e−ikξ cos(α−ϕ1) dξ |
|
||||||||||
0 |
|
|
|||||||||||
+ eika sin ϑ −i π4 |
sin ϕ2 |
ξeff |
Jh(1)(kξ , ϕ0)e−ikξ cos ϕ2 dξ |
|
|||||||||
0 |
|
||||||||||||
+ sin(α − ϕ2) |
|
0 |
|
|
Jh(1)(kξ , α − ϕ0)e−ikξ cos(α−ϕ2) dξ , |
(6.20) |
|||||||
|
|
|
|
|
ξeff |
|
|
|
|
|
|
|
Under the condition ka 1, the scattering sources Js,h(1) near the edge of the conic surface are asymptotically equivalent to those near the edge of the tangential wedge. Hence, the expressions inside the brackets in Equations (6.19) and (6.20) are also asymptotically equivalent to the similar expressions in Equations (4.29) and (4.30), which relate to the wedge diffraction problem. Utilizing this observation, one can rewrite Equations (6.19) and (6.20) as
(1) |
= |
√ |
u0a |
)f (1)(1)e−ika sin ϑ +i |
π |
+ f (1)(2)eika sin ϑ −i |
π |
* |
|
eikR |
|
|||
us |
|
4 |
4 |
|
|
|
, |
(6.21) |
||||||
R |
||||||||||||||
2π ka sin ϑ |
||||||||||||||
(1) |
= |
√ |
u0a |
)g(1)(1)e−ika sin ϑ +i |
π |
+ g(1)(2)eika sin ϑ −i |
π |
* |
eikR |
|
||||
uh |
|
4 |
4 |
|
|
. |
(6.22) |
|||||||
|
R |
|||||||||||||
2π ka sin ϑ |
|
These expressions can be interpreted as the ray asymptotics for the field us,h(1).
They show that, under the condition ka sin ϑ |
1, this field consists of two diffracted |
TEAM LinG
122 Chapter 6 Axially Symmetric Scattering of Acoustic Waves at Bodies of Revolution
rays incoming from the stationary points 1 and 2 at the circular edge. As is also seen there, the ray from point 2 undergoes the additional phase shift equal −π/2 while crossing the focal line along the z-axis.
The above approximations were derived for the regions 0 < ϑ ≤ and π − ω ≤ ϑ < π when both stationary points are visible from the observation point. The same technique is used for the calculation of the diffracted field in the region≤ ϑ ≤ π − ω, when the stationary point 2 is not visible and therefore does not contribute to the first-order edge waves. In this case, only the vicinity of the stationary point 1 participates in the calculation that results in
u(1) |
|
|
u0a |
f (1)(1)e−ika sin ϑ +i |
π eikR |
(6.23) |
|||||
|
|
|
4 |
|
|
|
|
||||
= √ |
|
|
|
|
|||||||
s |
2π ka sin ϑ |
|
|
|
R |
|
|||||
and |
|
|
|
|
|
|
|
|
|
|
|
(1) |
|
|
u a |
|
π eikR |
|
|||||
0 |
g(1)(1)e−ika sin ϑ +i 4 |
|
|
|
|
|
|||||
uh |
= |
√ |
|
|
|
. |
(6.24) |
||||
|
R |
||||||||||
2π ka sin ϑ |
Functions f (1) and g(1) are defined by Equations (4.14) and (4.15) with Equations (3.55) to (3.57) and (2.62) and (2.64). According to these equations,
|
|
|
sin |
π |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
||||||||||
f (1)(1) |
|
n |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
n − |
|
|
|
|
|
|
n |
|
|
|
|
n |
− |
|
|
|
+ n |
− |
|
|
|||||||||||
|
= |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||
|
|
|
|
n |
|
|
cos |
π |
|
|
cos |
π − ϑ |
|
− cos |
π |
|
cos |
π |
2ω |
|
ϑ |
|
|||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||
|
|
− |
|
|
|
|
|
|
|
sin ω |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(6.25) |
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
cos ω |
− |
cos(ω |
− |
ϑ ) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
and |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sin |
π |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
||||||||||
g(1)(1) |
|
n |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
n − |
|
|
|
|
|
|
n |
|
|
|
|
n |
− |
|
|
|
+ n |
− |
|
|
||||||||||||
|
= |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||
|
|
|
n |
|
|
cos |
π |
|
|
cos |
π − ϑ |
|
|
+ cos |
π |
|
|
cos |
π |
2ω |
|
ϑ |
|
||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
sin(ω − ϑ ) |
|
|
|
|
|
|
, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(6.26) |
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
|
|
− cos ω |
− |
cos(ω |
− |
ϑ ) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||
where |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n = |
α |
= 1 + |
ω + |
. |
|
|
|
|
|
|
|
|
(6.27) |
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
π |
|
|
|
|
π |
|
|
|
|
|
|
|
|
|
These expressions for functions f (1) and g(1) are valid in the entire region 0 ≤ ϑ ≤ π , although we have two different expressions for functions f (1)(2) and g(1)(2). For the
TEAM LinG