Файл: Ufimtsev P. Fundamentals of the physical theory of diffraction (Wiley 2007)(348s) PEo .pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 28.06.2024

Просмотров: 971

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

6.2 Scattering at a Disk 129

Equations we obtain in this way reveal a ray structure of the field, which consists of two diffracted rays coming from the stationary points 1 and 2:

us(0) = √ u0a

2π ka sin ϑ

and

uh(0) = √ u0a

2π ka sin ϑ

where the functions

and

)f (0)(1)eika sin ϑ +i π4 + f (0)(2)eika sin ϑ i π4 * eikR

R

)g(0)(1)eika sin ϑ +i π4 + g(0)(2)eika sin ϑ i π4 * eikR ,

R

f (0)(1) = −f (0)(2) = − 1

sin ϑ

g(0)(1) = −g(0)(2) = − cos ϑ sin ϑ

(6.60)

(6.61)

(6.62)

(6.63)

determine the directivity patterns of diffracted rays in the PO approximation.

Electromagnetic Waves

To show the relationship between the acoustic and electromagnetic diffracted fields, we present here the PO approximation for the field scattered at a perfectly conducting disk (Ufimtsev, 1962):

Eϑ(0) = Z0Hϕ(0) = −iaZ0H0x sin ϕ

cos ϑ

eikR

 

 

 

J1(ka sin ϑ )

 

 

 

 

sin ϑ

R

 

and

 

 

 

 

 

1

 

 

eikR

 

Eϕ(0) = −Z0Hϑ(0) = −iaZ0H0x cos ϕ

 

J1(ka sin ϑ )

 

.

(6.64)

sin ϑ

R

This field is due to the diffraction of the incident wave

 

 

 

 

 

Eyinc = −Z0Hxinc = −Z0H0x eikz = E0yeikz,

 

 

 

 

(6.65)

where Z0 = μ00 = 120π ohms is the impedance of free space. In view of the equations

E0ϕ = E0y cos ϕ = −Z0H0x cos ϕ,

(6.66)

the expressions (6.64) can be rewritten as

 

 

 

Eϕ(0) = E0ϕ

ia

eikR

 

 

J1(ka sin ϑ )

 

 

 

sin ϑ

R

 

TEAM LinG


130 Chapter 6 Axially Symmetric Scattering of Acoustic Waves at Bodies of Revolution

and

Hϕ(0) = H0ϕ

ia

eikR

 

 

cos ϑ J1(ka sin ϑ )

 

.

(6.67)

sin ϑ

R

Their comparison with Equations (6.56) and (6.57) reveals the following equivalence existing between the acoustic and electromagnetic diffracted fields:

us(0) = Eϕ(0),

if u0 = E0ϕ ,

(6.68)

uh(0) = Hϕ(0),

if u0 = H0ϕ .

 

 

 

 

These equations are in an agreement with relationships (1.100) and (1.101).

6.2.2 Field Generated by Nonuniform Scattering Sources

The field generated by the nonuniform scattering sources js,h(1) was investigated in Section 6.1.4. Here we reproduce the related approximations

us(1) = u0

a eikR

0 f (1)(1)[J0(ka sin ϑ ) i J1(ka sin ϑ )]

 

2

 

 

 

R

 

 

+ f (1)(2)[J0(ka sin ϑ ) + i J1(ka sin ϑ )]1

 

(6.69)

and

 

 

 

uh(1) = u0

a eikR

0g(1)(1)[J0(ka sin ϑ ) i J1(ka sin ϑ )]

 

2

 

R

 

+ g(1)(2)[J0(ka sin ϑ ) + i J1(ka sin ϑ )]1

,

(6.70)

where 0 ≤ ϑ π . The ray-type asymptotics of (6.69) and (6.70) are shown in Equations (6.21) and (6.22). The focal asymptotics of (6.69) and (6.7) are determined by

Equations (6.41) and (6.42).

General expressions for functions f (1)(1), f (1)(2) and g(1)(1), g(1)(2) are given by Equations (6.25) to (6.31). For the scattering disk, they are written below. Functions f (1)(1) and g(1)(1) are described in the entire region 0 ≤ ϑ π by

 

1

1

 

 

1

 

 

 

1

 

f (1)(1) = −

 

 

 

 

 

+

 

 

 

+

 

(6.71)

2

sin

ϑ

 

cos

ϑ

 

sin ϑ

 

 

 

 

 

 

 

22

TEAM LinG


6.2 Scattering at a Disk 131

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

1

 

 

1

 

 

 

cos ϑ

 

g(1)(1) =

 

 

 

 

 

+

 

 

 

 

+

 

.

(6.72)

2

sin

ϑ

 

cos

ϑ

 

sin ϑ

 

 

 

 

 

 

 

 

 

22

Functions f (1)(2) and g(1)(2) are described by

 

 

 

 

 

 

 

 

 

 

 

 

1

1

 

 

1

 

 

 

1

 

f (1)(2) =

 

 

 

 

 

 

 

 

 

 

(6.73)

2

sin

ϑ

 

cos

ϑ

 

sin ϑ

 

 

 

 

 

 

 

22

and

 

 

 

 

 

 

 

 

 

 

 

 

1

1

 

 

1

 

 

 

 

cos ϑ

 

g(1)(2) =

 

 

 

 

 

+

 

 

 

 

 

(6.74)

2

sin

ϑ

 

cos

ϑ

 

sin ϑ

 

 

 

 

 

 

 

22

in the region 0 ≤ ϑ π/2, and by

 

1

 

1

 

 

 

1

 

 

1

 

 

 

 

 

 

f (1)(2) =

 

 

 

 

 

+

 

 

 

 

(6.75)

2

sin

ϑ

 

cos

ϑ

 

sin ϑ

 

 

 

 

 

 

 

 

22

and

 

1

 

1

 

 

 

cos ϑ

 

 

1

 

 

 

 

 

 

g(1)(2) = −

 

 

 

 

 

+

 

 

 

 

(6.76)

2

sin

ϑ

 

cos

ϑ

 

sin ϑ

 

 

 

 

 

 

 

22

 

2

ϑ

π .

 

 

 

 

in the region π/

(1)

 

 

(1)

(2) are symmetric with respect to the disk plane,

Functions f

(1) and f

 

f (1)(1, π ϑ ) = f (1)(1, ϑ ),

f (1)(2, π ϑ ) = f (1)(2, ϑ ),

(6.77)

but functions g(1)(1) and g(1)(2) are antisymmetric,

 

g(1)(1, π ϑ ) = −g(1)(1, ϑ ),

g(1)(2, π ϑ ) = −g(1)(2, ϑ ).

(6.78)

Here, the fun ctions with the argument π ϑ correspond to the left half-space (z < 0). It follows from Equations (6.71) to (6.76) that

f (1)(1) = f (1)(2) = −

1

, for ϑ = 0 and ϑ = π ,

(6.79)

2

TEAM LinG



132 Chapter 6 Axially Symmetric Scattering of Acoustic Waves at Bodies of Revolution

and

 

1

 

0

 

 

g(1)(1) = g(1)(2) = ±

 

,

for ϑ = π

.

(6.80)

2

After substitution of these values into Equations (6.41) and (6.42), it follows that

us(1)

= −

u0a eikR

,

for ϑ = 0 and ϑ = π ,

(6.81)

2

 

R

and

 

 

 

 

 

 

 

 

(1)

 

u0a eikR

 

0

 

 

uh

= ±

 

 

 

,

for ϑ = π

.

(6.82)

2

 

R

It is worth noting that the amplitude of the focal field generated by the nonuniform sources does not depend on frequency.

6.2.3 Total Scattered Field

The sum

us,h = us,h(0) + us,h(1)

(6.83)

provides the first-order PTD approximation for the scattered field:

Quantities us,h(0) and us,h(1) are defined by Equations (6.56) and (6.57) and Equations (6.69) and (6.70).

Their rays-type asymptotics are determined in Equations (6.60), (6.61) and (6.21), (6.22).

When they are included in Equation (6.83), the functions f (0), g(0) contained both in (6.60) and (6.61) and in (6.21) and (6.22) cancel each other. As a result, the ray asymptotics for the total field contain only the Sommerfeld functions f and g:

us =

u0a

)f (1)eika sin ϑ +i

π

+ f (2)eika sin ϑ i

π

*

eikR

(6.84)

 

 

4

4

 

 

 

R

2π ka sin ϑ

 

 

and

 

 

 

 

 

 

 

 

 

uh =

 

u0a

)g(1)eika sin ϑ +i

π

+ g(2)eika sin ϑ i

π

*

eikR

 

 

 

4

4

 

.

(6.85)

R

2π ka sin ϑ

 

 

 

Functions f (1, 2) and g(1, 2) are described by Equations (6.71) to (6.76), where the last terms (being outside the parentheses) should be omitted.

TEAM LinG