Файл: Ufimtsev P. Fundamentals of the physical theory of diffraction (Wiley 2007)(348s) PEo .pdf
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 28.06.2024
Просмотров: 981
Скачиваний: 0
6.4 Backscattered Focal Fields 145
6.4.2 Total Backscattered Focal Field: First-Order
PTD Asymptotics
In this approximation, the total scattered field in the direction ϑ = π is found by summation of its components (6.138) and (6.41), (6.42) generated by the uniform and nonuniform scattering sources js,h(0) and js,h(1), respectively. Note that functions f (1) and g(1) in Equations (6.41) and (6.42) are determined for the case ϑ = π by Equations (6.102) and (6.103). The summation results in the following asymptotic expressions:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 sin |
π |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ei2kl |
eikR |
|||||||
|
|
u |
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|||||||||||||||
|
|
0 |
|
|
|
|
n |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||
us |
|
|
|
|
|
|
|
|
|
a |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
π |
|
|
|
|
|
π |
|
2ω |
|
|
|
|||||||||||||||||
|
= − 2 |
z |
(0) − |
|
|
n |
|
cos |
|
|
− 1 |
− cos |
|
|
− cos |
|
|
|
|
|
|
R |
|||||||||||||||||||||||
|
|
|
|
n |
|||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n |
n |
|
|
|
|
|
||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(6.140) |
|||||||
and |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 sin |
π |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ikR |
||||||
|
|
u0 |
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
e |
|||||||||||
|
|
|
|
|
|
|
n |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||
uh |
|
|
|
|
|
|
a |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ei2kl |
|
|
, |
|
|||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
π |
|
|
|
|
|
π |
|
2ω |
|
|
|
|||||||||||||||||||||||
|
= |
2 |
z (0) + |
|
|
|
n |
cos |
|
|
− 1 |
+ cos |
|
|
− cos |
|
|
|
|
R |
|||||||||||||||||||||||||
|
|
|
|
n |
|
|
|||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
n |
n |
|
|
|
|||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(6.141) |
with n = 1 + (ω + )/π where 0 ≤ ω ≤ π/2 and 0 ≤ ≤ π − ω. In the next two sections we consider the backscattering from two specific bodies of revolution.
6.4.3Backscattering from Paraboloids
The PO approximations for acoustic and electromagnetic fields in this problem are
identical. Focal asymptotics for the total acoustic and electromagnetic fields are different.
Asymptotics for the Scattered Field
The illuminated surface of the scattering object is a paraboloid with the generatrix given by the equation
ρ2(z) = 2pz, |
(6.142) |
where 0 ≤ z ≤ l. The focus of a paraboloid is located at the point z = p/2. According to Equation (6.125), the focal parameter p equals the radius of the paraboloid curvature
TEAM LinG
146 Chapter 6 Axially Symmetric Scattering of Acoustic Waves at Bodies of Revolution
at the vertex point z = 0. The shape of the shadowed side of the scattering object and its other geometric characteristics are shown in Figure 6.13.
Due to Equations (6.138) and (6.140), (6.141), the focal backscattered field is described by the following asymptotic expressions, where the first relates to the PO part of the field:
us(0) = −uh(0) = − |
u0 |
%p − a tan ω ei2kl & |
eikR |
|
|
|
|
. |
(6.143) |
||
2 |
R |
The next two expressions represent the first-order PTD approximations:
|
|
|
u0 p |
|
|
|
|
π |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ω ei2kl e |
|
|
|
|||||||||||
|
|
|
|
|
|
2 sin |
|
|
1 |
|
|
|
|
|
|
|
|
1 |
|
|
ikR |
|
||||||||||||||||||
us |
|
|
|
a |
n |
|
|
|
|
|
|
π |
|
|
(6.144) |
|||||||||||||||||||||||||
|
|
|
|
|
|
|
π |
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
= − |
2 |
− |
|
|
n |
cos |
|
|
− 1 |
− cos |
|
|
− cos |
|
2 |
|
|
|
R |
|
|
||||||||||||||||||
|
|
|
n |
|
|
|||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
n |
n |
|
|
|
|||||||||||||||||||||||||
and |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
p |
|
|
|
π |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ei2kl |
|
|
|
|
|
|
|||||
|
|
u0 |
|
2 sin |
|
|
1 |
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
eikR |
|
|
||||||||||||||||
uh |
|
|
n |
|
|
|
|
|
|
π |
2ω |
, |
(6.145) |
|||||||||||||||||||||||||||
|
a |
|
π |
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
= |
2 |
|
+ |
|
|
|
n |
cos |
|
− 1 |
+ cos |
|
− cos |
|
|
|
|
R |
|
|
|||||||||||||||||||
|
|
|
|
|
n |
|
|
|
|
|||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
n |
|
n |
|
|
with n = 1 + (ω + )/π . Comparison with the electromagnetic PO field scattered by a perfectly conducting paraboloid (Equation (2.5.3) in Ufimtsev (2003)) reveals the following relationships:
Ex(0) = us(0), |
if Ex(0) = uinc |
|
and |
if Hy(0) = uinc. |
|
Hy(0) = uh(0), |
(6.146) |
|
|
|
|
This result is in complete agreement with the general relationships (1.100) and (1.101). Taking into account that ρ (l) = p/a = tan ω and p = a tan ω, the above expres-
sions can be rewritten as
(0) |
(0) |
|
a |
− e |
i2kl |
|
eikR |
|
|
us |
= −uh |
= −u0 |
|
tan ω(1 |
|
) |
|
(6.147) |
|
2 |
|
R |
|||||||
|
|
|
|
|
|
|
|
|
TEAM LinG |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6.4 Backscattered Focal Fields |
147 |
|||||||||
and |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tan ω |
|
π |
|
|
|
|
|
|
|
|
|
|
|
|
|
ei2kl |
|
|
|
|
|
|
|
|
a |
|
2 sin |
|
|
|
1 |
|
|
|
|
|
1 |
|
|
e |
ikR |
||||||
|
|
|
|
n |
|
|
|
|
|
|
|
|
|
||||||||||||
us |
|
u0 |
|
|
|
|
|
|
|
|
|
|
|
|
, |
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||
|
|
|
|
|
|
|
π |
|
|
|
|
π |
|
2ω |
|
|
|||||||||
|
= − |
2 |
|
− |
n |
|
cos |
|
|
− 1 |
− cos |
|
− cos |
|
|
|
|
|
R |
||||||
|
|
n |
|
|
|
||||||||||||||||||||
|
|
|
|
|
|
|
|
n |
n |
|
|
|
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(6.148) |
|
|
|
|
tan ω |
|
|
π |
|
|
|
|
|
|
|
|
|
|
|
|
|
ei2kl |
|
|
|
|
|
|
|
a |
|
2 sin |
|
|
|
1 |
|
|
|
|
|
1 |
|
|
eikR |
|||||||
|
|
|
|
n |
|
|
|
|
|
|
|
|
|
||||||||||||
uh |
|
u0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
. |
|||||
|
|
|
|
|
|
|
|
π |
|
|
|
π |
|
2ω |
|
||||||||||
|
= |
|
2 |
|
+ |
|
n |
|
cos |
|
|
− 1 |
+ cos |
|
− cos |
|
|
|
|
R |
|||||
|
|
|
|
n |
|
|
|||||||||||||||||||
|
|
|
|
|
|
|
|
|
n |
n |
|
|
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(6.149) |
These equations are useful for investigation of the continuous transformation of the paraboloid into the flat disk when ω → π/2. Utilizing the relationship l = a2/2p = (a cot ω)/2, one can show that in the limiting case ω = π/2
|
|
|
|
|
|
us(0) |
= −uh(0) = u0 |
ika2 eikR |
|
|
|
|
|
|
|
|
|
(6.150) |
||||||||||||||||||||
|
|
|
|
|
|
2 |
|
|
|
|
|
R |
|
|
|
|
|
|
|
|
|
|
||||||||||||||||
and |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ika |
|
|
|
|
|
|
|
|
|
2 |
|
sin |
π |
|
eikR |
|
|
|||||||||||||||
|
|
|
|
a |
|
|
|
1 |
|
|
|
π |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||
us |
= |
u0 |
|
|
|
|
cot |
|
|
|
|
n |
n |
|
, |
(6.151) |
||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||
|
|
2 |
|
|
+ n |
|
|
|
n |
+ cos n |
− 1 |
R |
|
|
|
|||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
ika |
|
|
|
|
|
|
|
|
|
|
|
|
2 |
sin |
|
π |
|
|
eikR |
|
|||||||||||
|
|
|
|
|
|
a |
|
|
|
1 |
|
|
π |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n |
|
|
|||||||||||||||
uh |
= − |
u0 |
|
|
|
cot |
|
|
|
|
|
|
n |
|
|
|
|
(6.152) |
||||||||||||||||||||
|
|
|
|
n − cos |
π |
|
|
|
|
|||||||||||||||||||||||||||||
|
|
|
2 |
|
|
+ n |
n |
− 1 |
R |
|
||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with n = 3/2 + /π .
The distinguishing feature of the PO field (6.147) is its oscillations with the pure zeros corresponding to parameters kl = mπ where m = 1, 2, 3, . . . . Other properties of the scattered field are illustrated in the next section.
Numerical Analysis of Backscattering
Here we calculate the normalized scattering cross-section (6.112), which is determined in terms of the scattered field by Equations (6.110) and (6.111). According to section (Asymptotics for the Scattered field), one can derive the following expressions for the scattering cross-section.
The PO approximation is given by
σs(0) = σh(0) = π a2 |
tan ω · (1 − ei2kl ) |
2 |
|
(6.153) |
|||
|
|
|
|
|
|
|
|
TEAM LinG