Файл: Ufimtsev P. Fundamentals of the physical theory of diffraction (Wiley 2007)(348s) PEo .pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 28.06.2024

Просмотров: 978

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

6.4 Backscattered Focal Fields 149

According to the relationship l = a2/2p = (a cot ω)/2, the angle ω

(Fig. 6.13) is determined by the equation cot ω =

 

. For the given values

 

2kl/ka

of kl, this angle is in the interval 10.24ω ≤ 14. For the angle (Fig. 6.13), we take its value as 90. The results of calculations are plotted in Figure 6.14. The difference between the soft and hard data approaches 16–19 dB. Figure 6.14 demonstrates the rough PO data, which do not depend at all on the boundary conditions and are totally incorrect in the vicinity of minima.

The next topic is the transformation of the paraboloid into the disk. In this process, each intermediate shape between the initial parabolid and the final disk

is a paraboloid whose focal parameter p depends on its length l. It follows from the equation l = a2/2p that p = a2/2l. To find the angle ω (Fig. 6.13), we use the additional equation p = a tan ω and obtain tan ω = a/2l, or tan ω = ka/2kl. For the parameter ka we take the constant value ka = 3π , which does not depend

on the paraboloid length. In this case, the diameters of all the intermediate paraboloids and the final disk equal 2a = 3λ. For the initial paraboloid (which is transformed into the disk), we take kl = 6π , that is, l = 3λ. The results are plotted in Figure 6.15.

Now we consider the influence of the paraboloid shadowed base on backscat-

tering. The illuminated part of the object under investigation is the paraboloid with parameters ka = 3π and kl = 6π , when the base diameter and the length of the paraboloid are equal to each other: 2a = l = 3λ. The critical param-

eter of the base, which affects the edge wave, is the angle . It changes from zero to = π ω, where ω = tan−1(ka/2kl) 14. In the limiting

Figure 6.14 Backscattering at conformal paraboloids of different lengths (with constant focal parameter p). According to Equation (6.146), the PO curve also represents scattering of electromagnetic waves from perfectly conducting paraboloids.

TEAM LinG


150 Chapter 6 Axially Symmetric Scattering of Acoustic Waves at Bodies of Revolution

Figure 6.15 Transformation of the paraboloid into a disk with continuous maintaining of the paraboloidial shape. According to Equation (6.146), the PO curve also represents scattering of electromagnetic waves from perfectly conducting paraboloids.

case = π ω, the scattering object transforms into the perfectly reflecting infinitely thin screen. The results of this investigaton are shown in Figure 6.16.

The PO approximation does not depend on the shape of the shadowed part of the paraboloid. For the chosen parameter kl = 6π , it predicts the zero value for the scattered field. In the decibel scale it equals minus infinity and it is outside the figure area. As is seen in this figure, the backscattering from a soft paraboloid depends on the angle only a little (the change of scattering

Figure 6.16 Influence of the base shape on backscattering.

TEAM LinG

6.4 Backscattered Focal Fields 151

cross-section is about 3 dB), although a strong dependence is observed for the hard paraboloid (about 20 dB).

6.4.4Backscattering from Spherical Segments

The PO approximations for acoustic and electromagnetic fields in this problem are

identical. Focal asymptotics for the total acoustic and electromagnetic fields are different.

Asymptotics for the Scattered Field

The illuminated surface of the scattering object is a spherical segment whose generatrix is shown in Figure 6.17 and given by the equation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z(ρ) = b

 

 

 

b2

ρ2,

 

with 0 ≤ z l,

(6.159)

where b is the radius of the spherical'

surface. It follows from Equation (6.159) that

z

(ρ)

=

dz(ρ)

 

 

 

 

ρ

=

cot θ

(6.160)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dρ

 

 

= '

 

 

and

 

 

 

 

 

 

b2 ρ2

 

 

 

 

 

 

d2z(ρ)

 

 

 

 

 

 

b2

 

1

 

 

z (ρ) =

 

 

 

 

=

 

 

 

 

,

 

z (0) =

 

.

(6.161)

 

dρ2

 

 

(b2

ρ2)3/2

 

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The angle θ (z) in Equation (6.160) is displayed in Figure 6.13. At the point z = l, ρ = a, this angle equals θ (l) = ω. For the given quantities b and a, the angle ω and the segment length l are defined by equations

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

2

a

2

 

 

 

 

 

 

 

 

 

tan ω

=

and l

=

b

 

b2

a2

,

(6.162)

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

'

 

 

 

Figure 6.17 Generatrix of a spherical segment with an arbitrary shadowed base.

TEAM LinG



152 Chapter 6 Axially Symmetric Scattering of Acoustic Waves at Bodies of Revolution

but for the given ω and a, the segment radius b and the length l are determined as

b

 

a

l

 

a

1 − sin ω

.

(6.163)

= cos ω

=

 

 

 

 

cos ω

 

The last relationships are helpful for the investigation of the continuous transformation of the spherical segment into the flat disk when ω π/2, l → 0, and a = const.

According to Equations (6.138), (6.161), and (6.163), the field us,h(0) is determined by

 

(0)

(0)

1

(b a tan ω e

i2kl

 

eikR

 

 

us

 

= −uh

 

= −u0

 

 

 

)

 

 

 

 

(6.164)

 

 

 

2

 

 

R

or by

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(0)

 

(0)

 

 

 

a

− sin ωe

i2kl

 

eikR

 

us

 

= −uh

= −u0

 

(1

 

 

)

 

.

(6.165)

 

2 cos ω

 

 

R

Comparison with the electromagnetic PO field scattered by a perfectly conducting spherical segment (Equation (2.6.4) in Ufimtsev (2003)) reveals the following relationships:

Ex(0) = us(0),

if Ex(0) = uinc

 

and

if Hy(0) = uinc.

 

Hy(0) = uh(0),

(6.166)

 

 

 

This result is in a complete agreement with the general relationships (1.100) and (1.101).

u(1)

In view of Equations (6.140), (6.141), (6.161), and (6.163) the field us,h

= us,h(0) +

is described by

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s,h

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

 

 

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ei2kl

 

 

 

 

 

 

 

 

 

1

 

 

2 sin

 

 

 

 

 

1

 

 

 

 

 

 

 

1

 

 

 

 

 

eikR

 

us

 

 

 

u0

 

a

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π

 

 

 

 

 

 

π

 

 

 

 

2ω

 

 

 

 

= −

 

2

 

 

 

 

 

n

 

cos

 

 

 

− 1

cos

 

− cos

 

 

 

 

 

 

R

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

n

 

(6.167)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

 

 

2 sin

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ei2kl

eikR

 

 

 

 

 

1

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

=

 

 

+

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

uh

u0

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

,

(6.168)

 

 

2

 

 

 

 

 

 

n

 

 

 

cos n

− 1

+ cos n

− cos

n

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TEAM LinG


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.4 Backscattered Focal Fields

153

or by

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

ei2kl

 

 

 

 

 

 

 

a

1

 

2 sin

 

 

1

 

 

1

 

 

e

ikR

us

 

u0

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π

 

 

π

ω

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(6.169)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= −

2

 

n

 

 

 

 

− 1

cos n − cos

2n

 

cos ω

 

cos n

 

 

R

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

ei2kl

 

 

 

 

 

 

a

1

 

2 sin

 

 

1

 

 

1

 

 

eikR

 

 

 

 

n

 

 

 

 

 

uh

 

u0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

,

 

 

 

 

 

 

 

 

π

 

 

 

 

π

2ω

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(6.170)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

2

 

+

 

n

 

 

 

 

− 1

+ cos n − cos

n

 

 

cos ω

 

 

cos n

 

 

R

with n = 1 + + )/π , where 0 ≤ ω π/2 and 0 ≤ ≤ π ω.

In the limiting case when the spherical segment continuously transforms into the flat disk (ω π/2 and l → 0), Equations (6.164), (6.165), (6.166) and (6.167), (6.168) are exactly reduced to Equations (6.150) and (6.151) and (6.152), respectively.

Numerical Analysis of Backscattering

In this section, we calculate the normalized scattering cross-section (6.112), taking into account Equations (6.110) and (6.111). According to the previous section, the following expressions for the ordinary scattering cross-section are valid. The PO approximation is given by

 

 

 

 

 

 

 

σs(0) =

σh(0) = π a2

 

 

1

 

 

 

 

 

 

 

 

cos ω

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and the first-order PTD by

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

2 sin

 

 

 

 

1

 

 

 

 

 

 

σs

 

π a2

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cos ω

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cos

 

 

 

1

 

 

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 sin

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

σh

 

π a2

 

 

 

 

 

 

 

n

 

 

n

 

 

 

 

 

=

 

 

 

 

 

+

 

n

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cos ω

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cos

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

− tan ω · ei2kl

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

ei2kl 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π

 

 

 

2ω

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cos

 

 

 

cos

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

n

 

 

 

 

 

 

 

 

 

1

 

 

 

ei2kl

2

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π

 

 

2ω

 

 

 

 

 

 

 

 

 

 

 

 

cos

 

 

 

cos

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

n

 

 

 

 

(6.171)

(6.172)

(6.173)

with n = 1 + + )/π .

Two types of calculation are presented here.

The first is the continuous transformation of the spherical segment into the flat disk in the limiting case ω π/2. It is assumed that all transition surfaces are

TEAM LinG