Файл: Ufimtsev P. Fundamentals of the physical theory of diffraction (Wiley 2007)(348s) PEo .pdf
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 28.06.2024
Просмотров: 982
Скачиваний: 0
160 Chapter 6 |
|
Axially Symmetric Scattering of Acoustic Waves at Bodies of Revolution |
|||||||||
and |
|
|
|
|
|
|
|
|
|
|
|
uh(0) = u0 |
|
' |
|
eik 1(zst ) |
|
|
|
|
|||
|
R1(zst )R2(zst ) |
|
|
|
|
||||||
2 |
|
|
|
|
|||||||
|
a |
1 |
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
||
+ |
|
|
{g(0)(1)[J0(ka sin ϑ ) − iJ1(ka sin ϑ )] |
|
|
|
|
||||
2 |
eR |
, |
(6.193) |
||||||||
+ g(0)(2)[J0(ka sin ϑ ) + iJ1(ka sin ϑ )]} eikl(1−cos ϑ ) |
|||||||||||
|
|
|
|
|
|
|
|
|
ikR |
|
|
where J0 and J1 are the Bessel functions. These asymptotics are valid away from the focal line (ϑ = π ) under the condition ka sin ϑ 1. The focal field is described by the asymptotics (6.138), which can be rewritten as
|
− |
1 |
|
|
|
a |
|
eikR |
|
|
|
us(0) = −uh(0) = u0 |
'R1(0)R2(0) + |
|
|
||||||||
|
|
tan ω ei2kl |
|
, |
(6.194) |
||||||
2 |
2 |
R |
where R1(0) = R2(0) = 1/z (0).
When ϑ → π the above asymptotics (6.192) and (6.193) exactly transform into the focal asymptotics (6.194). Therefore, the expressions (6.192) and (6.193)
can be considered as the appropriate approximations valid in the entire region
π − ω ≤ ϑ ≤ π .
6.5.3 Bessel Interpolations for the PTD Field in the Region π − ω ≤ ϑ ≤ π
The PTD field consists of the sum of the PO field and the field us,h(1) generated
by the nonuniform components js,h(1) of the scattering sources. The components js,h(1) caused by the smooth bending of the scattering surface generate the far field of
order k−1 (Schensted, 1955), and those caused by the sharp edge create the field of order k−1/2 (as shown in Equations (6.21) and (6.22)). Therefore, in the first-order PTD approximation, one can retain only the dominant contributions generated by the edge-type sources js,h(1). The uniform asymptotics for these contributions in the region π − ω ≤ ϑ ≤ π are given by the expressions (6.47) and (6.48), where one should include the additional factor exp[ikl(1 − cos ϑ )] due to the shift of the coordinates’ origin. By the summation of the modified Equations (6.47) and (6.48) with the PO asymptotics (6.192), (6.193), one obtains
|
1 |
|
|
|
|
|
||
|
|
|
|
|
|
|||
usPTD = u0 |
− |
|
|
R1(zst )R2(zst ) eik 1(zst ) |
|
|||
2 |
|
|||||||
|
a |
' |
|
|
|
|||
+ |
|
{ f (1)[J0(ka sin ϑ ) − iJ1(ka sin ϑ )] |
|
|||||
2 |
|
|||||||
+ f (2)[J0(ka sin ϑ ) + iJ1(ka sin ϑ )]} eikl(1−cos ϑ ) |
ikR |
|
||||||
e |
(6.195) |
|||||||
R |
TEAM LinG
6.5 Axially Symmetric Bistatic Scattering 163
The next idea is to extract (in the explicit form!) the Fresnel integral from Equation
(6.203). It is accomplished with a simple procedure: |
|
|
|
|
|
||||||||||||||||||
|
|
I = eik (ξst ) G(0) |
t(l) |
eikt2 dt + |
t(l) |
eikt2 [G(t) − G(0)]dt |
(6.206) |
||||||||||||||||
|
|
|
|
|
|
|
|
|
|
−∞ |
|
|
|
|
−∞ |
|
|
|
|
|
|
|
|
or |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
√ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
1 |
|
kt(l) |
|
|
G |
t(l)] − G(0) |
|
|
|
1 |
|
||||||||||
I |
|
eik (ξst )G(0) |
eix2 dx |
|
eik (l) |
|
O |
. (6.207) |
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
||||||||||||||
|
= √ |
k |
|
√ |
|
−∞ |
|
|
+ |
[ |
i2kt(l) |
+ |
|
k2 |
|
||||||||
Under the condition |
|
|
1, when the observation point is far from the geomet- |
||||||||||||||||||||
kt(l) |
|||||||||||||||||||||||
|
rical optics boundary ϑ = 2ω, this expression is reduced asymptotically to the first two terms in Equation (6.185).
When the observation point approaches the boundary (ϑ = 2ω + 0 and t = +0), one should utilize Equations (6.201) and (6.202) and the additional approximations
1 |
|
1 |
|
|
1 |
|
(ξst ) |
|
|
|
|
|
|
||||||||||||||
|
= |
|
|
|
|
|
|
+1 − |
|
|
|
|
|
|
(ξ − ξst ) + O)(ξ − ξst )2*, , |
(6.208) |
|||||||||||
|
(ξ ) |
|
(ξ − ξst ) (ξst ) |
2 |
(ξst ) |
||||||||||||||||||||||
|
2t(ξ ) |
|
2 |
|
|
|
1 (ξst ) |
|
|
|
|
|
|
||||||||||||||
|
= |
|
+1 − |
|
|
|
|
|
|
(ξ − ξst ) + O[(ξ − ξst )2], , |
|
(6.209) |
|||||||||||||||
|
(ξ ) |
(ξst ) |
3 |
(ξst ) |
|
||||||||||||||||||||||
|
F(ξ ) = F(ξst ) + F (ξst )(ξ − ξst ) + · · · , |
|
|
|
|
|
(6.210) |
||||||||||||||||||||
and |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
(ξst ) |
|
|
||||||
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
||||||||||
|
G(t) − G(0) = (ξ − ξst ) |
|
F (ξst ) − |
|
|
F(ξst ) |
|
. |
(6.211) |
||||||||||||||||||
|
(ξst ) |
3 |
(ξst ) |
These relationships lead to the following value of the canonical integral at the boundary ϑ = 2ω + 0:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I = |
π |
|
F(l)eik (l)+iπ/4 |
|
|
|
|
|
|
|
|||||||||||
|
|
|
|
|
|
|
|
||||||||||||||
2 k (l) |
|
|
|
|
|
. |
|
||||||||||||||
|
1 |
|
|
1 |
|
|
|
|
(l) |
|
|
|
1 |
|
|||||||
+ |
|
F |
(l) − |
|
|
|
F(l) |
|
eik (l) + O |
|
(6.212) |
||||||||||
ik (l) |
3 |
(l) |
k2 |
||||||||||||||||||
This technique is applied further to the calculation of the PO field: |
|
||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
ik |
eikR |
|
|
|
|
||||||
|
|
|
us(0) = u0 |
√ |
|
|
eiπ/4Is |
|
|
|
|
|
|
(6.213) |
|||||||
|
|
|
|
R |
|
|
|
||||||||||||||
|
|
|
2π k sin ϑ |
|
|
|
|||||||||||||||
and |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uh(0) |
|
|
|
|
|
|
|
ik |
eikR |
|
|
|
|
||||||
|
|
= −u0 |
√ |
|
eiπ/4Ih |
|
, |
|
|
(6.214) |
|||||||||||
|
|
R |
|
|
|||||||||||||||||
|
|
2π k sin ϑ |
|
|
TEAM LinG