Файл: Ufimtsev P. Fundamentals of the physical theory of diffraction (Wiley 2007)(348s) PEo .pdf
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 28.06.2024
Просмотров: 972
Скачиваний: 0
7.9 Improved Theory of Elementary Edge Waves 203
of the general expressions (7.163) and (7.164) and the identities Vt = V thp, Ut = U thp, which are valid in the case α = 2π .
To find the total field scattered by finite objects, one should also calculate the contribution generated by the uniform component distributed over the finite elementary
strips (0 ≤ ξ1,2 ≤ l). In the far zone (R |
|
|
kl2), it is determined by the integrals |
|||||||
|
dζ |
|
eikR l |
|
||||||
duh1(0) = |
|
ik sin γ0 sin ϑ sin ϕ |
|
|
|
0 jh1(0)(ξ1, ϕ0)e−ikξ1 cos β1 dξ1 |
(7.179) |
|||
4π |
|
R |
||||||||
and |
|
|
|
|
|
|
|
|
|
|
|
|
|
dζ |
eikR |
l |
|
||||
|
dus1(0) = − |
|
sin γ0 |
|
|
|
0 js1(0)(ξ1, ϕ0)e−ikξ1 cos β1 dξ1. |
(7.180) |
||
|
4π |
R |
|
|
Replacing ξ1, β1, ϕ, ϕ0 here with ξ2, β2, α − ϕ, α − ϕ0, one obtains the equations associated with the field from strip 2 (0 ≤ ξ2 ≤ l). These integrals are easily calculated in closed form. We show only those results that relate to the grazing incidence (ϕ0 = π ):
(0) |
= u0eikζ cos γ0 |
dζ eikR sin γ0 sin ϑ sin ϕ |
)eikl(1−cos β1) − 1* , |
(7.181) |
|||||||||||||||||||
duh1 |
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||
4π R |
1 − cos β1 |
|
|||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
√ |
|
|
|
|
|
|
|
|
|
|
|
|
|
sin γ0 |
|
|
|
|
|
|
|
|
|
||||
(0) |
= u0e−ikζ cos γ0 |
dζ eikR |
|
|
2 |
|
|
ei3π/4 |
|
kl(1−cos β1) |
2 |
||||||||||||
dus1 |
|
|
|
|
|
|
|
√π |
0 |
|
|
eit dt. |
|||||||||||
2π |
R |
1 |
− |
cos β1 |
|
|
|||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(7.182) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
For the grazing scattering direction (β1 = 0, ϕ = 0), it follows from these equations that
duh1(0) = 0 |
|
|
|
|
|
|
(7.183) |
|||
and |
|
|
|
|
|
|
|
|
|
|
|
dζ eikR |
|
|
|
|
|
|
|||
dus1(0) = u0e−ikζ cos γ0 |
|
|
2kl |
|
|
|||||
|
|
|
sin γ0 |
|
|
ei3π/4. |
(7.184) |
|||
2π R |
π |
As was expected, the field duh,s(0) is also free from the grazing singularity.
7.9.2Electromagnetic EEWs
This theory is based on the paper by Ufimtsev (2006b).
Asymptotic expressions for electromagnetic EEWs established in Section 7.8 possess the grazing singularity. Careful analysis reveals the reason for this singularity. As in
TEAM LinG
7.9 Improved Theory of Elementary Edge Waves 205
and
Gϕ(1)(ϑ , ϕ) = −[Vt (σ1, ϕ0) − Vthp(σ1, ϕ0)] sin ϕ sin γ0
− [Vt (σ2, α − ϕ0) − ε(α − ϕ0)Vthp(σ2, α − ϕ0)] sin(α − ϕ) sin γ0. (7.190)
It is supposed here that 0 < ϕ0 ≤ π .
In the directions ϑ = π − γ0 associated with the diffraction cone, these expres-
sions are simplified as |
|
|
|
||
Fϑ(1)(π − γ0, ϕ) = − |
|
1 |
[ f (ϕ, ϕ0, α) − f hp(ϕ, ϕ0)], |
Fϕ(1)(ϑ , ϕ) = 0, |
|
|
|||||
sin γ0 |
|||||
|
|
|
|
|
(7.191) |
1 |
|
|
|
Gϑ(1)(π − γ0, ϕ) = 0, |
|
Gϕ(1)(π − γ0, ϕ) = |
|
[g(ϕ, ϕ0, α) − ghp(ϕ, ϕ0)], |
|||
sin γ0 |
|||||
|
|
|
|
|
(7.192) |
with functions f , g and f hp, ghp defined above in Section 7.9.1. Comparison with Equations (7.167) and (7.168) reveals the following relationships between the electromagnetic and acoustic EEWs:
Fϑ(1) |
1 |
|
Fs(1)(π − γ0, ϕ) |
|
||
(π − γ0, ϕ) = − |
|
|
(7.193) |
|||
sin γ0 |
||||||
and |
|
|
|
|
|
|
|
1 |
Fh(1)(π − γ0, ϕ). |
|
|||
Gϕ(1)(π − γ0, ϕ) = |
|
(7.194) |
||||
sin γ0 |
According to Section 7.9.1 these functions are free from the grazing singularities as well as from the singularities in the directions of the incident and reflected rays.
(0) hp
Field Radiated by the Uniform Component j ≡ j
hp
Here we investigate the field radiated by the current j induced on the finite elementary strips (0 ≤ ξ1,2 ≤ l) belonging to the finite plane faces of a scattering object (Fig. 7.3). In this investigation we apply Cartesian coordinates x, y, z and x , y , z associated with faces 1 and 2, respectively. Axes x and x belong to faces 1 and 2, respectively, and they are parallel to tangents τ1 and τ2. Utilizing the known solution
TEAM LinG
7.9 Improved Theory of Elementary Edge Waves 207
(0)
After substitution of j 1,2 into Equation (7.200), this leads to the following expressions:
|
|
1 |
H0ze−ikζ cos γ0 |
dζ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
eikR |
|
|
|
|
|
|
|||||||||||||||
dAx,1 = − |
|
|
|
|
[B3(ϕ, ϕ0) − B1(ϕ, ϕ0)] sin γ0 |
|
|
, |
|
|
|
(7.201) |
|||||||||||||||||||||||||||||||||||||
ik |
2π |
R |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||
|
|
1 |
e−ikζ cos γ0 |
dζ eikR |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||
dAz,1 = − |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
ik |
2π |
|
|
|
R |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
|
|
Y0E0z |
B3(ϕ, ϕ0) sin ϕ0 |
|
|
|
|
|
|
|
|
|
ϕ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||
|
|
|
|
B2(ϕ) sin |
|
0 |
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||||||||
|
|
|
|
2 |
|
|
|
B1(ϕ, ϕ0) sin ϕ0 |
|||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sin γ0 |
|
ϕ0 |
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||
× |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
− |
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
B1(ϕ, ϕ0) cos ϕ0 , |
||||||||||||
|
|
|
H0z cos γ0 B3(ϕ, ϕ0) cos ϕ0 |
|
|
B2(ϕ) cos |
2 |
|
|
||||||||||||||||||||||||||||||||||||||||
+ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+ |
|
|
|
|
|
|
|
|
|
|
|
|
− |
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sin γ0 |
|
|
|
|
|
|
|
|
|
||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(7.202) |
||
where |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
B |
(ϕ, ϕ |
) |
= |
eikl (ϕ,ϕ0) − 1 |
, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(7.203) |
||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||
1 |
|
0 |
|
(ϕ, ϕ0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||
|
|
|
|
|
|
|
e−iπ/4 |
|
|
|
|
|
|
|
|
√ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
2 |
|
|
|
kl (ϕ) |
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||
|
B2(ϕ) = |
√ |
|
|
|
|
0 |
|
|
|
|
eit |
|
|
dt, |
|
|
|
|
|
|
|
|
|
|
|
|
(7.204) |
|||||||||||||||||||||
|
(ϕ) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||
|
π |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||
B3 |
(ϕ, ϕ0) |
|
1 |
|
|
|
|
|
e |
ikl (ϕ,ϕ0) e−iπ/4 ∞ |
|
|
|
|
|
|
|
e |
it |
2 |
dt |
|
1 |
|
|||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
|
|
|
|
|
|
= |
(ϕ, ϕ0) |
|
|
|
|
|
|
|
√π |
|
|
√ |
2kl |
sin γ0 cos |
ϕ0 |
|
|
|
|
− |
2 |
|
|||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ϕ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+ B2(ϕ) sin γ0 cos |
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(7.205) |
|||||||||||||||||||
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||
with |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(ϕ, ϕ0) = cos2 γ0 − sin2 γ0 cos ϕ0 − cos β1, |
|
|
|
|
(7.206) |
||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
(ϕ) = 1 − cos β1. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(7.207) |
Components dAx ,2 and dAz,2 are found from dAx,1 and dAz,1, respectively, with
replacements H0z → −H0z, ϕ → α − ϕ, ϕ0 → α − ϕ0, and β1 → β2.
We then substitute the above equations for the vector dA into Equations (7.198) and (7.199) and obtain the field expressions in the form of Equations (7.130) and (7.131):
dE(0) |
|
|
dζ |
(0)(ϑ , ϕ) |
eikR |
, |
dH |
(0) |
|
R |
|
dE |
(0) |
/Z0, |
(7.208) |
||
= |
|
|
|
R |
|
= [ |
× |
] |
|||||||||
(0)(ϑ , ϕ) |
2π E |
|
|
|
|
|
|
|
|
||||||||
= [ |
E0t (ζ ) (0)(ϑ , ϕ) |
+ |
Z0H0t (ζ ) (0)(ϑ , ϕ) |
eikφi (ζ ), |
(7.209) |
||||||||||||
E |
|
F |
|
|
|
G |
|
|
] |
|
|
|
|
TEAM LinG