Файл: Ufimtsev P. Fundamentals of the physical theory of diffraction (Wiley 2007)(348s) PEo .pdf
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 28.06.2024
Просмотров: 967
Скачиваний: 0
208 Chapter 7 |
Elementary Acoustic and Electromagnetic Edge Waves |
|
|
|||||||||||||||
where |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Fϑ(0) = F1ϑ (ϕ, ϕ0, ϑ ) + ε(α − ϕ0)F1ϑ (α − ϕ, α − ϕ0, ϑ ), |
Fϕ(0) = 0, |
(7.210) |
||||||||||||||||
|
Gϑ(0) = G1ϑ (ϕ, ϕ0, ϑ ) − ε(α − ϕ0)G1ϑ (α − ϕ, α − ϕ0, ϑ ), |
|
|
(7.211) |
||||||||||||||
|
Gϕ(0) = G1ϕ (ϕ, ϕ0, ϑ ) + ε(α − ϕ0)G1ϕ (α − ϕ, α − ϕ0, ϑ ). |
|
|
(7.212) |
||||||||||||||
Here, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
B3(ϕ, ϕ0) sin ϕ0 |
|
|
|
|
|
ϕ |
|
|
|
|
sin ϑ , |
|||
|
|
|
|
|
|
(ϕ) |
sin |
0 |
|
|
|
|
||||||
F |
1ϑ (ϕ, ϕ0 |
, ϑ ) |
= |
+ |
B2 |
2 |
|
|
− |
B1(ϕ, ϕ0) sin ϕ0 |
||||||||
sin γ0 |
|
|||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(7.213) |
|
|
|
|
B3(ϕ, ϕ0) cos ϕ0 |
|
|
|
|
|
|
ϕ |
|
|
B1(ϕ, ϕ0) cos ϕ0 cos γ0 sin ϑ |
||||
|
|
|
|
|
|
(ϕ) |
cos |
|
0 |
|
|
|||||||
G |
1ϑ (ϕ, ϕ0 |
, ϑ ) |
= |
+ |
B2 |
2 |
|
− |
||||||||||
|
|
|
|
|||||||||||||||
|
|
|
|
|
|
sin γ0 |
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
− [B3(ϕ, ϕ0) − B1(ϕ, ϕ0)] sin γ0 cos ϑ cos ϕ, |
|
|
(7.214) |
|||||||||||
G1ϕ (ϕ, ϕ0, ϑ ) = [B3(ϕ, ϕ0) − B1(ϕ, ϕ0)] sin γ0 sin ϕ. |
|
|
|
(7.215) |
Notice that functions B1,2,3 are finite when = 0 and = 0. In particular, for the grazing incidence (ϕ0 = π ) and for the grazing scattering (ϑ = π − γ0, ϕ = 0), they are equal to
√ |
|
e−iπ/4 |
|
|
1 |
|
|
||||
B1 = ikl, B2 = |
2kl |
√ |
|
|
, |
B3 = |
|
kl. |
(7.216) |
||
2 |
|||||||||||
π |
As expected, the field generated by the uniform component of the surface current is also free from the grazing singularity.
Thus, the asymptotic theory developed in Sections 7.9.1 and 7.9.2 is valid for all directions of incidence and scattering. It is well suited for calculation of bistatic scattering in the case when both planar faces of the edge are illuminated by the incident wave (α − π ≤ ϕ0 ≤ π ). For other incidence directions ϕ0, one can apply the original theory presented in Sections 7.1 to 7.8.
Here it is pertinent to mention the alternative approach (Michaeli, 1987; Breinbjerg, 1992; Johansen, 1996) for elimination of the grazing singularity. The uniform and nonuniform components of the surface current are defined there according to the original PTD, and the grazing singularity is eliminated by truncation of
elementary strips (0 ≤ x1,2 ≤ l). Compared to this approach, a distinctive feature of
(1)
the present theory is as follows: It introduces a new nonuniform scattering source j that generates an elementary edge wave regular in all scattering directions. In other words, it allows the extraction of the fringe component from the total field in a pure explicit form.
TEAM LinG