Файл: Ufimtsev P. Fundamentals of the physical theory of diffraction (Wiley 2007)(348s) PEo .pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 28.06.2024

Просмотров: 946

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

262 Chapter 12 Focusing of Multiple Edge Waves Diffracted at a Disk

Figure 12.1 Disk projection on the plane y0z (bold solid lines) and the edge waves (dashed lines). Angles ϕ and ψ = 2π ϕ (measured from the left and right faces of the disk) determine the directions to the observation point P.

determined by Equation (11.3) adjusted to the disk problem as

uh(m+1)(P) =

 

1

L )u¯l(m,t)(ζ )g(ϕ, 0, α)

+ u¯r(m,t)(ζ )g(ψ , 0, α)*

eikR

dζ

 

 

4π

 

R

 

 

=

a

)

u(m,t)

 

(m,t)

g(ψ , 0, α)*

eikR

 

 

 

 

 

 

 

 

 

 

 

,

m

 

1,

 

 

. . .

 

 

 

 

 

 

 

 

2

¯l

g(ϕ, 0,

α) + u¯r

R

 

 

=

 

2, 3,

.

(12.3)

Here, a is the radius of the disk, ψ = 2π ϕ, α = 2π . The quantity u¯l(m,t) is the total m-order edge wave arrived along the left face of the disk to the edge point ζ ,

¯ (m,t) = ¯ (m) + ¯(m)

ul ull url . (12.4)

¯ (m)

The quantity ull denotes the m-order wave on the left face (at the edge point ζ )

generated (at the edge point ζ

π a) by the (m

¯l

 

 

1)-order wave u(m−1,t) that arrived

¯ (m)

at the edge along the left face. Analogously, the quantity url is the m-order wave on the left face (at the point ζ of the edge) generated (at the point ζ π a) by the

(m

¯r

 

1)-order wave u(m−1,t) that arrived there along the right face. With this type of

denotations the sense of the following function becomes clear

 

u¯r(m,t) = u¯lr(m) + u¯rr(m).

Due to Equation (12.1),

 

u¯l(m,t) = −u¯r(m,t),

u¯ll(m) = −u¯lr(m),

In addition, according to Equation (2.64),

g(ψ , 0, α) = −g(ϕ, 0, α) =

 

 

(12.5)

u¯rr(m) = −u¯rl(m).

(12.6)

1

.

(12.7)

 

ϕ

cos

2

TEAM LinG


 

 

 

 

 

12.1 Multiple Hard Diffraction

263

In view of these relationships, Equation (12.3) can be rewritten as

 

u(m+1)

(P)

=

au(m,t)g(ϕ, 0, α)

eikR

 

(12.8)

R

h

 

 

¯l

 

 

 

or

 

 

 

 

 

 

 

 

 

 

u(m+1)

(P)

=

au(m,t)g(ψ , 0, α)

eikR

.

(12.9)

 

h

 

 

¯r

 

 

R

 

¯ (1,t) ≡ ¯ pr ¯ (1,t) ≡ ¯ pr

The quantities ul ul and ur ur are the primary edge waves at the disk face, which passed through the focal line and arrived at the edge point ζ . They can be

found with application of Equation (8.29), where one should set γ0 = π/2, R = 2a, ρ = −a, and g = g(0, π/2, α) for u¯lpr , and g = g(α, π/2, α) for u¯rpr . In the same way

¯(m) ¯ (m) ¯ (m) =

one can find the quantities ull , ulr , url with m 2, 3, . . . ; only the function g will be different, namely g = g(0, 0, α) = −1. We omit all intermediate manipulations and obtains the results:

u¯lpr = −u¯rpr = g(0,

and

¯ (m,t) = −¯ (m−1,t) ul ul

where

π/2, α)λ = −

 

 

2λ

λ = (−1)m2λm,

 

λ =

ei(2kaπ/4)

 

 

 

 

 

 

 

 

 

 

2

 

.

 

 

 

 

 

 

 

π ka

 

 

 

 

 

 

Hence

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u(m+1)(P)

=

a

 

 

g(ϕ, 0, α)(

1)mλm

eikR

 

 

 

2

 

 

R

 

 

h

 

 

 

 

 

 

 

 

 

 

 

 

and the total focal field of all edge waves equals

 

 

 

 

 

 

 

uhew(P) = a g(ϕ, π/2, α) +

 

 

 

 

 

 

(−1)mλm

eikR

 

 

 

.

2

g(ϕ, 0, α)

 

 

R

 

 

 

 

 

 

 

 

 

m=1

 

 

 

 

 

(12.10)

(12.11)

(12.12)

(12.13)

(12.14)

The function g(ϕ, π/2, α) is singular in the directions ϕ = π/2 and ϕ = 3π/2. Because of this, the total scattered field in the far zone should be represented in the traditional PTD form:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

uhsc = uh(0) + uhfr + uh(m).

 

(12.15)

 

 

 

 

m=2

 

 

Here,

 

 

 

 

 

 

 

ika2 eikR

 

3π/2

 

uh(0) = ±

 

 

 

in the directions ϕ =

π/2

(12.16)

2 R

TEAM LinG


264 Chapter 12 Focusing of Multiple Edge Waves Diffracted at a Disk

is the field generated by the uniform scattering sources jh(0) the PO approximation. The quantity

uhfr = ag(1), π/2, α)

eikR

,

R

or, in other words, it is

(12.17)

with g(1)(π/2, π/2, α) = −g(3π/2, π/2, α) = −1/2, is the field generated by the nonuniform/fringe scattering sources jh(1) caused by the primary diffraction of the incident wave at the disk. The series in Equations (12.14) and (12.15) represent the contributions generated by that part of jh(1) that is caused by the multiple diffraction.

After the substitution of Equation (12.15) into Equation (11.8) one finds the total

scattering cross-section of the disk

 

 

 

 

 

 

 

 

 

 

 

 

sin[m(2ka π/4)]

 

 

σ

h =

2π a2

1

 

2

(

1)m

.

(12.18)

 

 

 

+ ka m=1

 

2m−1(π ka)m/2

 

 

This is the incomplete asymptotic approximation, which includes only the first term of the total asymptotic expansion (with ka → ∞) for each multiple edge wave. Comparison with the exact asymptotic solution (Witte and Westpfahl, 1970), which contains six first terms for the total cross-section, confirms that Equation (12.18) is correct.

12.2MULTIPLE SOFT DIFFRACTION

The focal field created by the primary edge waves (excited by the incident wave uinc = exp(ikz)) is determined according to Equation (11.2) as

 

 

uspr

= af (ϕ, π/2, α)

eikR

,

 

 

 

(12.19)

 

 

R

 

 

 

where α = 2π and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

f (ϕ, ϕ0

, α)

 

1

 

 

1

 

 

 

 

 

1

 

(12.20)

 

 

 

 

 

ϕ ϕ0

 

 

 

 

 

ϕ + ϕ0

 

 

 

=

2

 

cos

 

+ cos

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This is the edge wave generated by the total scattering sources j stot = js(0) + js(1). The focal field of the primary edge waves created only by the nonuniform component js(1) is also described by Equation (12.1), where one should replace the function f by

f (1), ϕ0, α) = f (ϕ, ϕ0, α) f (0), ϕ0)

(12.21)

with

 

f (0), ϕ0) =

sin ϕ0

 

 

.

(12.22)

cos ϕ + cos ϕ0

TEAM LinG


12.2 Multiple Soft Diffraction 265

The higher-order edge waves arise due to the slope diffraction of waves running along the flat faces of the disk. They are calculated on the basis of Equation (10.19). In the case of diffraction at a solid convex body of revolution, the related technique was developed in Section 11.2. In the present section, this technique is extended for the investigation of diffraction at an acoustically soft disk. According to Equation (10.19),

the focal field generated by the (m + 1)-order edge waves is determined by

 

us(m+1)(P) =

1

 

u¯l(m,t)

∂f (ϕ, 0, α)

+ u¯r(m,t)

∂f (ψ , 0, α

 

eikR

dζ

(12.23)

 

 

 

 

 

 

2π L

∂ϕ0

∂ϕ0

R

where dζ = a dθ

is the

differential arc length of the disk edge L. The geometry

of the problem is shown in Figure 12.1. The angles ϕ and ψ are measured from different faces of the disk and ψ = 2π ϕ. Due to the axial symmetry of the problem, Equation (12.23) is reduced to

us(m+1)(P) = a u¯l(m,t)

∂f (ϕ, 0, α)

+ u¯r(m,t)

∂f (ψ , 0, α)

 

eikR

 

 

 

 

.

(12.24)

∂ϕ0

∂ϕ0

R

¯ (m,t)

Here, ul,r is the amplitude factor of the wave, which is equivalent to the total

ζ

ζ

π

a)

m-order edge wave coming (to the edge point ζ from its opposite point ¯ =

 

 

along the left or right face, as indicated by the subscripts l, r. In accordance with Equation (12.1) the scattered field is also symmetric with respect to the disk plane, therefore

 

 

 

u¯l(m,t) = u¯r(m,t).

 

 

 

 

 

 

 

 

 

 

Besides,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sin

ϕ

 

∂f (ψ , 0, α)

 

 

∂f (ϕ, 0,

α)

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

=

2

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

∂ϕ0

 

 

∂ϕ0

 

 

2 cos2

ϕ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

Hence,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u(m+1)

(P)

=

2au(m,t)

∂f (ϕ, 0, α)

 

eikR

.

 

 

 

 

s

 

 

¯l

∂ϕ0

 

 

R

The quantity

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u¯l(m,t) = u¯ll(m) + u¯rl(m) = 2u¯ll(m)

(12.25)

(12.26)

(12.27)

(12.28)

¯(m)

consists of two equal terms. The term ull relates to the m-order edge wave on the left face of the disk at the point ζ . This wave is generated by the (m − 1)-order edge wave

(m)

=

 

a, which arrived there along the left side of the disk.

at the opposite point ¯

ζ

 

π

ζ

 

 

The term u¯rl relates to the m-order edge wave (at the same point ζ on the left face of

the disk) created by the (m − 1)-order edge wave at the opposite point

¯

=

ζ

π

a

 

ζ

 

 

 

TEAM LinG


266 Chapter 12 Focusing of Multiple Edge Waves Diffracted at a Disk

and arrived there along the right side of the disk. Because of the symmetry of the field, these terms are equal to each other.

¯(m) ¯ (m,t)

The quantities ull and ul are calculated with application of Equations (10.18) and (10.20), where one should set γ0 = γ01 = π/2, R = 2a, and ρ = −a. These calculations result in

(1,t)

 

(1)

 

∂f (0, π/2, α)

 

 

 

ei(2ka+π/4)

 

u¯l

u¯l

 

= μ

 

 

,

with μ =

8ka

 

,

(12.29)

 

 

 

 

 

∂ϕ

π ka

u(m,t)

=

2μu(m−1,t)

2f (0, 0, α)

,

with m

=

2, 3, 4 . . .

 

(12.30)

 

 

¯l

 

¯l

 

∂ϕ∂ϕ0

 

 

 

 

 

 

¯(1,t) = ¯ (1)

The denotation ul ul is used to emphasize that only one primary edge wave exists on each side of the disk, but two edge waves of any higher order are on every side. Thus,

 

 

 

 

 

 

 

 

 

 

∂f (0, π/2, α)

2f (0, 0, α)

 

 

m−1

 

 

 

 

 

u¯l(m,t) = 2m−1μm

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(12.31)

 

 

 

 

 

∂ϕ

 

 

 

∂ϕ∂ϕ0

 

 

 

 

 

 

 

 

 

 

 

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∂f (0, π/2, α)

2f (0, 0, α)

m−1 ∂f (ϕ, 0, α) eikR

 

 

us(m+1)(P) = a2mμm

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

,

(12.32)

 

 

 

 

∂ϕ

 

 

∂ϕ∂ϕ0

 

 

 

 

 

 

 

∂ϕ0

 

 

R

with m = 1, 2, 3, . . . and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∂f (0, π/2, α)

1

 

 

 

2f (0, 0, α)

=

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

,

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

(12.33)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

∂ϕ

 

 

 

2

 

 

 

∂ϕ∂ϕ0

 

 

 

 

 

 

The total focal field created by all the edge waves together equals

 

 

 

 

 

 

usew(P) = a

eikR

f (ϕ, π/2, α) +

∂f (0, π/2, α) ∂f (ϕ, 0, α)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

∂ϕ

 

 

 

 

 

 

 

∂ϕ0

 

 

 

 

 

 

 

 

 

 

 

eim(2ka+π/4)

 

 

2f (0, 0, α)

m−1

.

 

 

 

 

 

 

× m

 

 

 

2m

(8ka

 

)m

 

 

 

 

 

 

 

 

 

 

 

 

 

(12.34)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This expression can be used to calculate the total cross-section (11.8), where ustot is the total field scattered in the forward direction ϕ = 3π/2. In the present case,

 

eikR

 

ka

 

∂f (0, π/2, α) ∂f (3π/2, 0, α)

us(t) = a

 

 

 

 

i

 

 

+ f (1)(3π/2, π/2, α) +

 

 

 

 

 

R

 

 

 

2

 

∂ϕ

 

∂ϕ0

 

 

 

 

eim(2ka+π/4)

2f (0, 0, α) m−1

 

 

 

 

 

2m

 

 

 

 

 

 

 

.

 

 

 

× m

=

1

(8ka

π ka

)m

∂ϕ∂ϕ0

 

(12.35)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TEAM LinG