Файл: Ufimtsev P. Fundamentals of the physical theory of diffraction (Wiley 2007)(348s) PEo .pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 28.06.2024

Просмотров: 949

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

11.2 Multiple Hard Diffraction 257

waves of the (m + 1) order. More precisely, u¯h(m) is the field of the m-order wave at the diffraction point ζ . One can show that

(1)

pr

 

1

 

ikφi

 

ei(2kaπ/4)

 

u¯h

uh

=

 

u0e

 

g(α, ϕ0, α)

 

 

(11.4)

2

 

 

π ka

and

¯ (m) = ¯ (m−1)

uh uh

These relationships lead to

ei(2kaπ/4)

g(0, 0, α) √ , m = 2, 3, 4, . . . . (11.5) 4 π ka

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ei(2kaπ/4)

 

m

 

 

 

 

 

 

 

 

 

 

 

 

(m)

= u0eik

i

 

 

 

 

 

 

 

m

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u¯h

φ 2g(α, ϕ0, α) g(0, 0, α)

 

 

 

 

4

 

 

,

 

 

 

 

 

m = 1, 2, 3, . . . .

 

 

 

 

π ka

 

 

 

 

 

 

 

 

 

 

 

 

-

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(11.6)

Therefore, the total field of all edge waves on the focal line equals

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

uhew(P) = uhpr (P) + uh(m)(P)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

·

m=2

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

4π ka

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u0elkφi

 

a

eikR

g(ϕ, ϕ0, α)

 

 

 

 

g(ψ , 0, α)g(α,

ϕ0, α)

ei(2kaπ/4)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

m 3 [

 

 

 

 

]

 

 

 

 

4π ka

 

m−1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

g(ψ , 0, α)g(α, ϕ0, α)

 

 

 

g(0, 0, α) m−2

 

 

 

 

 

 

 

 

 

 

. (11.7)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Here, the series is the geometric progression that can be converted to its sum. The physical meaning of Equation (11.7) is clear. The first term in the braces relates to the primary edge waves, the second to the secondary waves, and the third term represents the sum of all multiple edge waves of order 3 and higher.

The total scattered field on the focal line also includes the reflected rays (6.187) in front of the object (z < 0) and the shadow radiation (6.228) behind the object (z > 0). This approximation for the scattered field actually represents the incomplete asymptotic expansion, because it includes only the first term in the individual asymptotic expansion for each multiple edge wave. Also, Equation (6.187) is only the first term in the asymptotic expansion for the reflected field.

Expression (11.7) can be used to calculate the total scattering cross-section. In the case of the incident plane wave, uinc = eikz, this quantity is defined as

σh,s =

4π

Im(uh,stot · ReikR),

(11.8)

k

 

 

 

TEAM LinG


8ka π ka

258 Chapter 11 Diffracted at a Convex Body of Revolution with a Flat Base

where uh,stot is the total field scattered in the forward direction (ψ = π/2). This field consists of the following components:

The shadow radiation, which is equivalent to the PO field (for the forward direction) and determined by Equation (6.228), where one should set u0 = 1;

The primary edge waves generated by the nonuniform/fringe scattering sources

jh,s(1) and determined by Equations (6.41), (6.42) or (11.2), where one should set u0 = 1 and u0 exp(ikφi) = 1, respectively;

The sum of all multiple edge waves of order 2 and higher.

The substitution of this total field into Equation (11.8) results in the following asymptotic expression:

 

 

2

 

π

 

 

 

 

 

σh = 2π a2 +1 +

 

g %

 

, 0, α& g(α, ϕ0, α)

 

 

ka

2

 

 

 

 

 

 

 

 

 

 

sin m(2ka π/4)]

 

 

 

g(0, 0, α)

m

 

1

,

(11.9)

×

[

]

 

 

[4m(π ka)m/2

 

 

 

m=1

 

 

 

 

 

 

 

 

 

which is incomplete in the sense mentioned above. Notice that the series in Equation (11.9) equals zero, when 2ka π/4 = (l = 1, 2, 3, . . .). In this case, all corrections to the first term in Equation (11.9) are determined by the higher-order terms in the individual asymptotic expansions for each multiple edge wave.

11.3MULTIPLE SOFT DIFFRACTION

The primary edge wave excited by the incident wave (11.1) is determined by Equation (11.2). The higher-order edge waves arise due to the slope diffraction of waves running along the flat base of the scattering object. These higher-order edge waves are calculated on the basis of Equation (10.19). For the (m + 1)-order edge wave arriving at point P on the focal line, it can be written in the form

u(m+1)(P)

=

1

∂f (ψ , 0, α) eikR

u(m)dζ

au(m)

∂f (ψ , 0, α)

 

eikR

. (11.10)

 

 

 

 

 

 

 

s

2π

 

∂ϕ0

 

R

L ¯s

= ¯s

∂ϕ0

 

R

¯ (m)

Here, us is the amplitude factor of the wave, which is equivalent to the m-order edge

ζ

ζ

π

a. This quantity

wave coming to the edge point ζ from its opposite point ¯ =

 

 

is calculated with application of Equations (10.18) and (10.20), where one should set γ0 = γ01 = π/2, R = 2a, and ρ = −a. These calculations result in

u¯s(1)

u¯s(m)

= −u0e

ikφi ∂f (α, ϕ0, α) ei(2ka+π/4)

 

 

 

 

 

8ka

 

 

 

,

 

 

 

 

 

 

∂ϕ

 

π ka

u(m−1) 2f (0, 0, α) ei(2ka+π/4) ,

= ¯s

 

 

∂ϕ∂ϕ0

 

 

 

 

 

 

 

 

 

 

 

(11.11)

(11.12)

TEAM LinG


11.3 Multiple Soft Diffraction 259

or

 

 

ikφi ∂f (α, ϕ0, α)

 

 

 

m−1

 

ei(2ka+π/4)

m

 

(m)

= −u0e

 

2f (0, 0, α)

 

.

 

u¯s

 

 

 

 

 

8ka

 

 

(11.13)

 

 

 

 

 

∂ϕ

∂ϕ∂ϕ0

 

π ka

After the substitution of (11.13) into Equation (11.10) we obtain

u(m+1)(P)

= −

u

eikφ

i

·

a

eikR

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

s

0

 

 

 

 

 

 

 

 

 

 

 

 

×

 

∂f (ψ , 0, α) ∂f (α, ϕ0, α)

2f (0, 0, α)

m−1

ei(2ka+π/4)

 

 

 

 

 

 

 

 

 

 

 

 

8ka

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∂ϕ0

 

 

 

 

∂ϕ

∂ϕ ∂ϕ0

 

π ka

The total field of all edge waves on the focal lines equals

m

.

(11.14)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

usew(P) = uspr (P) + us(m)(P)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

·

 

m=1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

∂ϕ0

 

 

 

∂ϕ

 

 

 

u0eikφi

 

a

eikR

f (1)

, ϕ0, α)

 

∂f (ψ , 0,

α) ∂f

, ϕ0

, α)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

m 2

 

i(2ka π/4) m−1

.

 

 

 

 

 

 

∂ f (0, 0, α)

 

 

e

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(11.15)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

× m

 

2

 

 

∂ϕ ∂ϕ0

 

 

8kaπ ka

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The series in Equation (11.15) is a geometrical progression.

Now we apply Equation (11.15) for calculation of the total scattering crosssection. In the case of the incident plane wave uinc = eikz, it is defined by

Equation (11.8), where

ustot = ush + us(1) +

us(m).

(11.16)

 

m=2

 

Here, ush is the shadow radiation (6.228) (where one should set u0 = 1), the quantity

us(1) = a f (1), ϕ0, α)

eikR

(11.17)

R

is the primary edge wave generated by the nonuniform scattering sources js(1), and the series represents the sum of all edge waves of order 2 and higher. Thus, the total

scattering cross-section of the acoustically soft object equals

+

σs = 2π a2

1 −

2 ∂f (π/2, 0, α) ∂f (α, ϕ0, α)

 

 

ka

 

 

∂ϕ0

 

 

∂ϕ

 

 

 

 

 

2f (0, 0, α)

 

m−1

sin[m(2ka + π/4)]

 

 

 

 

.

(11.18)

× m

=

1

 

∂ϕ ∂ϕ0

 

 

(8ka)m(π ka)m/2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TEAM LinG


260 Chapter 11 Diffracted at a Convex Body of Revolution with a Flat Base

We emphasize again that approximations (11.15) and (11.18) are the incomplete asymptotic expansions in the sense discussed above in Section 11.2. The series in Equation (11.18) equals zero when 2ka + π/4 = (l = 1, 2, 3, . . .). In this case, all corrections to the first term in (11.18) are determined by the higher-order terms in the individual asymptotic expansions for each multiple edge wave.

PROBLEMS

11.1Prove Equations (11.4) to (11.6) for the primary and multiple acoustic edge waves on a hard scattering object. Explain all of the details, including caustic parameters, phase shifts, directivity factors, and fractional coefficients.

11.2Prove Equations (11.11) to (11.13) for the primary and multiple acoustic edge waves on a soft scattering object. Explain all of the details, including caustic parameters, phase shifts, directivity factors, and fractional coefficients.

TEAM LinG

Chapter 12

Focusing of Multiple

Edge Waves Diffracted at

a Disk

The theory presented in this chapter is based on the papers by Ufimtsev (1989, 1991). It represents the extension of the previous chapter to the disk diffraction problem, where it is necessary to take into account the edge waves propagating along both faces of the disk (Fig. 12.1). This problem is complicated by the fact that the wave traveling along one face of the disk generates (due to diffraction at the edge) the higher–order waves not only on the same face but also on the other face. However, its solution can be lightened if we utilize the symmetry of the scattered field. Let us consider the scattering at an arbitrary plate located in the plane z = 0. It follows from Equation (1.10) that

 

 

 

 

 

 

 

ussc(z) = ussc(z),

uhsc(z) = −uhsc(z).

 

(12.1)

Here, the first equality is obvious and the second is caused by the factor

 

eikr

=

 

eikr

n

eikr

n

d

 

eikr

(

 

r

n)

 

d

 

eikr

(r

n), (12.2)

 

 

 

 

 

 

 

 

 

 

 

∂n r

r

r

 

 

= − dr r

 

 

· ˆ = −

· ˆ = − dr r

 

· ˆ

ˆ

· ˆ

where rˆ(z) · nˆ = −rˆ(z) · nˆ.

The geometry of the problem is shown in Figure 12.1. The incident wave is given by uinc = eikz. The scattered field is investigated at the points P on the z-axis, which is the focal line of the edge-diffracted waves.

12.1MULTIPLE HARD DIFFRACTION

The primary edge waves excited by the incident wave directly are given by Equation (11.2), where one should set u0 exp(ikφi) = 1. The (m + 1)-order waves are

Fundamentals of the Physical Theory of Diffraction. By Pyotr Ya. Ufimtsev

Copyright © 2007 John Wiley & Sons, Inc.

261

TEAM LinG