Файл: Ufimtsev P. Fundamentals of the physical theory of diffraction (Wiley 2007)(348s) PEo .pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 28.06.2024

Просмотров: 928

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Conclusions

The PTD developed in this book clarifies the scattering physics. Via the shadow radiation, it elucidates the nature of the Fresnel diffraction and forward scattering, as well as the optical theorem. It also establishes the diffraction limit for the reduction of the total power scattered by large (compared to the wavelength) objects covered by absorbing materials. This theory shows that, even with the application of perfectly absorbing coatings on perfectly reflecting objects, their total scattered power can be reduced solely by a factor of two. This means that, against bistatic sonar and radar, it is impossible to completely mask the scattering object with any absorbing materials (Ufimtsev, 1996).

As a source-based theory, PTD allows the calculation of contributions to the scattered field, which are generated by individual elements of the scattering surface. Such data are valuable in the design of antennas and objects with given characteristics of radiation and scattering.

PTD is a flexible theory amenable to further development and generalization. In combination with other analytic and numeric approaches, it can be used to create efficient hybrid techniques for the solution of complex diffraction problems. Some examples are presented in the papers listed in the section “Additional References Related to the PTD Concept: Applications, Modifications and Developments”.

Fundamentals of the Physical Theory of Diffraction. By Pyotr Ya. Ufimtsev

Copyright © 2007 John Wiley & Sons, Inc.

313

TEAM LinG

TEAM LinG

References

M. ABRAMOWITZ AND I.A. STEGUN (1972): Handbook of Mathematical Functions, Dover Publication, Inc., New York.

J.S. ASVESTAS (1985): Line integrals and Physical Optics. Part 1: The transformation of the solid-angle surface integral to a line integral. J. Opt. Soc. Am., 2(6), 891–895.

J.S. ASVESTAS (1985): Line integrals and Physical Optics. Part II: The conversion of the Kinchhoff surface integral to a line integral. J. Opt. Soc. Am., 2(6), 896–902.

J.S. ASVESTAS (1986): The Physical Optics fields of an aperture on a perfectly conducting screen in terms of line integrals. IEEE Trans Antennas Propagat., AP-34(9), 1155–1158.

J.S. ASVESTAS (1995): The Physical Optics integral and computer graphics. IEEE Trans Antennas Propagat., 43(12), 1459–1460.

B.B. BAKKER AND E.T. COPSON (1939): The Mathematical Theory of Huygen’s Principle, Oxford, University Press.

C.A. BALANIS (1989): Advanced Engineering Electromagnetics, John Wiley & Sons, New York.

H. BATEMAN (1955): The Mathematical Analysis of Electrical and Optical Wave-Motion on the Basis of Maxwell’s Equations, Dover Publications Inc., New York, pp. 90–94.

J.BOERSMA AND Y. RAHMAT-SAMII (1980): Comparison of two leading uniform series of edge diffraction with the exact uniform asymptotic expansion. Radio Sci., 15, 1179–1194.

V.A. BOROVIKOV (1966): Diffraction at Polygons and Polyhedrons, Nauka, Moscow.

V.A. BOROVIKOV AND B.E. KINBER (1994): Geometrical Theory of Diffraction, Institution of Electrical Engineering, London, UK.

M.BORN AND E. WOLF (1980): Principles of Optics, Pergamon Press, London, New York.

J.J. BOWMAN, T.B.A. SENIOR, AND P.L.E. USLENGHI, Eds (1987): Electromagnetic and Acoustic Scattering by Simple Shapes, Hemisphere Publishing Corp., New York.

O. BREINBJERG (1992): Higher order equivalent edge currents for fringe wave radar scattering by perfectly conducting polygonal plates. IEEE Trans Antennas Propagat., 40(12), 1543–1554.

D. BRILL AND G.C. GAUNAURD (1993): Approximate description of the sound fields scattered by insonified, submerged, ribbed, flat-ended cylindrical structures. J. Acoust. Soc. Am., 93(1), 71–79.

I.N. BRONSHTEIN AND K.A. SEMENDYAEV (1985): Handbook of Mathematics, Van Norstrand Reinhold Company, New York.

M.W. BROWNE (1991a): Two rival designers led the way to stealthy warplanes. New York Times, Sci. Times Sec., May 14, 1991.

M.W. BROWNE (1991b): Lockheed credits Soviet theory in design of F-117. Aviation Week Space Technol., p. 27, December 1991.

D.I. BUTORIN AND P. YA. UFIMTSEV (1986): Explicit expressions for an acoustic edge wave scattered by an infinitesimal edge element. Soviet Physics–Acoustics, 32(4), 283–287.

D.I. BUTORIN, N.A. MARTYNOV, AND P. YA. UFIMTSEV (1987): Asimptoticheskie vyrazheniya dlya elementarnoi kraevoi volny. Radiotekhnika i elektronika, 32, 1818–1828 [English translation, Asymptotic expressions for the elementary edge wave. Soviet Journal of Communications Technology and Electronic, 1988, 33(1), 17–26].

Fundamentals of the Physical Theory of Diffraction. By Pyotr Ya. Ufimtsev

Copyright © 2007 John Wiley & Sons, Inc.

315

TEAM LinG


316 References

P.C. CLEMMOW (1950): Some extensions to the method of integration by steepest descents. Quart. J. Mech. Appl. Math., 3(2), 241–256.

C. CHESTER, B. FRIEDMAN, AND F. URSELL (1957): An extension of the method of steepest descents, Proc. Camb. Phil. Soc., 54, 599–611.

E.T. COPSON (1965): Asymptotic Expansions, University Press, Cambridge.

L.B. FELSEN (1955): Backscattering from wide-angle and narrow-angle cones. J. Appl. Phys., 26(3), 138–151.

V.A. FOCK (1965): Electromagnetic Diffraction and Propagation Problems, Pergamon Press, London. W. FRANZ AND R. GALLE (1955): Semiasymptotische Reihen fur die Beugung einer ebenen Welle am

Zylinder. Z. Naturforschung, 10a(5), 374–378.

J.I. GLASER (1985): Bistatic RCS of complex objects near forward scatter. IEEE Trans Aerosp. Electron. Syst., AES-21(1), 70–78.

W.B. GORDON (1994): High frequency approximations to the Physical Optics scattering integral. IEEE Trans. Antennas Propagat., 42(3), 427–432.

W.B. GORDON (2003): Calculating scatter from surface with zero curvature. IEEE Trans Antennas Propagat., 51(9), 2506–2508.

W.B. GORDON AND H.J.B. BILOW (2002): Reduction of surface integrals to contour integrals. IEEE Trans Antennas Propagat., 50(3), 308–311.

I.S. GRADSHTEYN AND I.M. RYZHIK (1994): Tables of Integrals, Series, and Products, Academic Press, Inc., New York.

G.L. JAMES (1980): Geometrical Theory of Diffraction for Electromagnetic Waves, Institution of Electrical Engineers, Peter Peregrinus Ltd., Stevenage, UK, and New York.

P.M. JOHANSEN (1996): Uniform physical theory of diffraction equivalent edge currents for truncated wedge strips. IEEE Trans Antennas Propagat., AP-44(7), 989–995.

A. KALASHNIKOV (1912): The Gouy–Sommerfeld diffraction. Zhurnal Russkogo Fiziko-Khemicheskogo Obshchestva, Fizicheskyi Otdel [Journal of the Russian Physical-Chemical Society, Physical Division], 44(3), 137–144.

S.N. KARP AND J.B. KELLER (1961): Multiple diffraction in a hard screen. Optica Acta, 8(1), 61–72. J.B. KELLER (1962): Geometrical theory of diffraction. J. Opt. Soc. Am., 52(2), 116–130.

L.E. KINSLER, A.R. FREY, A.B. COPPENS, AND J.V. SANDERS (1982): Fundamentals of Acoustics, John Wiley

& Sons, New York.

F.KOTTLER (1923): Elektromagnetische Theorie der Beugung an schwarzen Schirmen. Annalen der Physik, 71(15), 457–508.

R.G. KOUYOUMJIAN AND P.H. PATHAK (1974): A uniform theory of diffraction for an edge in a perfectly conducting surface. Proc. IEEE, 62(11), 1448–1461.

E.F. KNOTT AND T.B.A. SENIOR (1973): Equivalent currents for a ring discontinuity. IEEE Trans Antennas Propagat., AP-21(9), 698–696.

E.F. KNOTT (1985): A progression of high-frequency RCS prediction techniques. Proc. IEEE, 73(2), 252–264.

YU.A. KRAVTSOV AND YU.I. ORLOV (1983): Caustics, catastrophes and wave fields. Uspekhi Fizicheskikh Nauk, 141(4), 591–627 (in Russian) [English translation: Sov. Phys. Usp.].

H.M. MACDONALD (1902): Electric Waves, The University Press, Cambridge, England, pp. 186–198. H.M. MACDONALD (1912): The effect produced by an obstacle on a train of electric waves. Phil. Trans.

Royal Soc. London, Series A, Math. Phys. Sci., 212, 299–337.

G.A. MAGGI (1888): Sulla propagazione libra e perturbata delle onde luminose in un mezzo isotropo. Annali di Matematica, 16(2), 21–48.

D.A. MCNAMARA, C.W.I. PISTORIUS, AND J.A.G. MALHERBE (1990): Introduction to the Uniform Geometrical Theory of Diffraction, Artech House, Boston–London.

P. MEINCKE, O. BREINBERG, AND E. JORGENSON (2003): An exact line integral representation of the magnetic field Physical Optics scattered field. IEEE Trans. Antennas Propagat., 51(6),

pp. 1395–1398.

P.MENOUNOU, M.R. BAILEY, AND D.T. BLACKSTOCK (2000): Edge wave on axis behind an aperture or disk having a ragged edge. J. Acoust. Soc. Am., 107(1), pp. 103–111.

C.A. MENTZER, L. PETERS JR., AND R.C. RUDDUCK (1975): Slope diffraction and its application to horns.

IEEE Trans. Antennas Propagat., 23(2), 153–159.

TEAM LinG


References 317

A.MICHAELI (1986): Elimination of infinities in equivalent edge currents. IEEE Trans. Antennas Propagat., AP-34(7), 912–918.

A.MICHAELI (1987): Equivalent currents for second order diffraction by the edges of perfectly conducting polygonal surfaces. IEEE Trans. Antennas Propagat., AP-35(2), 183–190.

K.M. MITZNER (1974): Incremental length diffraction coefficients. Technical Report AFAL-TR-73-26, Northrop Corporation, Aircraft Division.

F.A. MOLINET (2005): Edge-excited rays on convex and concave structures: A review, IEEE Antennas Propagat. Mag., 47(5), 34–46.

B.T. MORSE (1964): Diffraction by polygonal cylinders. J. Math. Phy., 5(2), 199–214.

P.J. MOSER, H. UBERALL, AND J.R. YUAN (1993): Sound scattering from a finite cylinder with ribs. J. Acoust. Soc. Am., 94(6), 3342–3351.

J.D. MURRAY (1984): Asymptotic Analysis, Springer-Verlag, New York.

P.H. PATHAK (1988): “Techniques for high-frequency problems,” Ch. 4 in, Eds., Y.T. LO AND S.W. LEE, Antenna Handbook, Van Nostrand Reinhold Company, New York.

W. PAULI (1938): On asymptotic series for functions in the theory of diffraction of light. Phys. Rev., 54(2), 924–931.

G. PELOSI, S. SELLERI, AND P. YA. UFIMTSEV (1998): Newton’s observations of diffracted rays. IEEE Antennas Propagat. Mag., 40(2), 7–14.

A.D. PIERCE (1994): Acoustics, Introduction to Its Physical Concepts and Applications, Acoustical Society of America, New York.

Y. RAHMAT-SAMII AND R. MITTRA (1978): Analysis of high-frequency diffraction of an arbitrary incident field by a half-plane – Comparison with four asymptotic techniques. Radio Sci., 13(1), 31–48.

B.RICH (1994): Inside the top secret skunk works. Popular Sci., October, 61–81. B. RICH AND L. JANOS (1994): Skunk Works, Little Brown, Boston.

A.RUBINOWICZ (1917): Die Beugungswelle in der Kichhoffschen Theorie der Beugungserscheinungen. Annalen der Physik, IV Folge, Band 53, Heft 12, 257–278.

A.RUBINOWICZ (1924): Zur Kirchhoffschen Beugungstheorie. Annalen derPhysik, Folge 4, Band 73, 339–364.

A.RUBINOWICZ (1965): Darstellung der Sommerfeldschen Beugungswelle in einer Gestalt, die Beitrage der einzelnen Elemente der beugende Kante zur gesamten Beugungswelle erkennen last. Acta Physica Polonica, 28, 6(12) 811–860.

G.T. RUCK, D.E. BARRICK, W.D. STUART, AND C.K. KIRCHBAUM (1970): Radar Cross Section Handbook, Vols. 1 and 2, Plenum Press, New York.

C.E. SCHENSTED (1955): Electromagnetic and acoustic scattering by a semi-infinite body of revolutions.

J. Appl. Phys., 26(3), 306–308.

K.SCHWARZSCHILD (1902): Die Beugung und Polarisation des Lichts durch einen Spalt. Mathematische Annalen, 55, 177–247.

T.B.A. SENIOR AND P.L.E. USLENGHI (1972): Experimental detection of the edge-diffraction cone. Proc. IEEE, PROC-60, 1448.

A.SOMMERFELD (1896): Mathematische Theorie der Diffraction. Mathematische Annalen, 47, 317–374.

A.SOMMERFELD (1935): “Theorie der Beugung,” Ch. 20 in, F. FRANK AND R.V. MIZES. Eds., Die Differentialund Integralgleichungen der Mechanik und Physik, Vol. 2, Physical Part. Friedr. Vieweg & Sohn, Braunschweig, Germany. (American Publications, New York, 1943, 1961).

R.TIBERIO AND S. MACI (1994): An incremental theory of diffraction: Scalar Formulation. IEEE Trans.

Antennas Propagat., 42(5), 600–612.

R. TIBERIO, S. MACI, AND A. TOCCAFONDI (1995): An incremental theory of diffraction: Electromagnetic formulation. IEEE Trans. Antennas Propagat., 43(1), 87–96.

R. TIBERIO, A. TOCCAFONDI, A. POLEMI, AND S. MACI (2004): Incremental theory of diffraction: A new improved formulation. IEEE Trans. Antennas Propagat., 52(9), 2234–2243.

M. TRAN VAN NHIEU (1995): Diffraction by plane screens. J. Acoust. Soc. Am., 97(2), 796–806.

M. TRAN VAN NHIEU (1996): Diffraction by the edge of a three-dimensional object. J. Acoust. Soc. Am., 99(1), 79–87.

P.YA. UFIMTSEV (1957): “Diffraktsiya na kline i lente”, part I of “Priblizhennyi raschet diffraktsii ploskikh electromagnitnykh voln na nekotorykh metallicheskikh telakh” (Diffraction at a wedge and a

TEAM LinG


318 References

strip, part I of “Approximate computation of the diffraction of plane electromagnetic waves at certain metallic objects”). Zhurnal Tekhnicheskoi Fiziki, 27(8), 1840–1849. (English translation published by

Soviet Physics–Technical Physics.)

P.YA. UFIMTSEV (1958a): “Diffraktsiya na diske i konechnom tsilindre,” part II of “Priblizhennyi raschet diffraktsii ploskikh electromagnitnykh voln na nekotorykh metallicheskikh telakh.” (Diffraction at a disk and a finite cylinder, part II of “Approximate computation of the diffraction of plane electromagnetic waves at certain metallic objects.”) Zhurnal Tekhnicheskoi Fiziki, 28(11), 2604–2616. (English

translation published by Soviet Physics–Technical Physics.)

P.YA. UFIMTSEV (1958b): Secondary diffraction of electromagnetic waves by a strip. Soviet Physics– Technical Physics, 3(3), 535–548.

P.YA. UFIMTSEV (1958c): Secondary diffraction of electromagnetic waves by a disk. Soviet Physics– Technical Physics, 3(3), 549–556.

P.YA. UFIMTSEV (1961): Symmetrical illumination of finite bodies of revolution. Radio Eng. Electron. Phys., 6(4), 492–500.

P.YA. UFIMTSEV (1962): Metod Kraevykh Voln v Fizicheskoi Teorii Diffraktsii (Method of Edge Waves in the Physical Theory of Diffraction). Moscow, Sovetskoe Radio, 243 pp. (Machine translated into English by the U.S. Air Force, Foreign Technology Division (National Air Intelligence Center), Wright-Patterson AFB, OH, 1971. Technical Report AD 733203, Defense Technical Information Center of USA, Cameron Station, Alexandria, VA, 22304-6145, USA.)

P.YA. UFIMTSEV (1968): Diffraction of electromagnetic waves at black bodies and semitransparent plates.

Radiophys. Quantum Electron., 35(6), 527–538 (translated by Consult. Bureau, New York).

P.YA. UFIMTSEV (1969): Asymptotic investigation of the problem of diffraction on a strip. Radio Eng. Electron. Phys., 14(7), 1014–1025.

P.YA. UFIMTSEV (1970): Asymptotic solution to the problem of diffraction from a strip using Dirichlet boundary conditions. Radio Eng. Electron. Phys., 15(5), 782–757.

P.YA. UFIMTSEV (1979): Uniform asymptotic theory of diffraction by a finite cylinder. SIAM, 37(3),

459–466.

P. YA. UFIMTSEV (1981): Reflection of electromagnetic waves from a finite cylinder. Radio Eng. Electron. Phys., 26(2), 59–65.

P. YA. UFIMTSEV (1989): Theory of acoustical edge waves. J. Acoust. Soc. Amer., 86(2), 463–474.

P. YA. UFIMTSEV (1990): Black bodies and shadow radiation, Soviet J. Commun. Technol. Electron., 35(5), 108–116 (translated by Scripta Technica).

P. YA. UFIMTSEV (1991): Elementary edge waves and the physical theory of diffraction. Electromagnetics, 11(2), 125–160.

P.YA. UFIMTSEV (1995): Rubinowicz and the modern theory of diffracted rays. Electromagnetics, 15(5), 547–565.

P.YA. UFIMTSEV AND Y. RAHMAT-SAMII (1995): Physical theory of slope diffraction. Special issue on Radar Cross Section of Complex Objects. Annales des Telecommunications, (Annals of Telecommunications) 50(5–6), 487–498.

P.YA. UFIMTSEV (1996): Comments on diffraction principles and limitations for RCS reduction techniques,

Proc. IEEE, 84(12), 1828–1851.

P.YA. UFIMTSEV (1998): Fast convergent integrals for nonuniform currents on wedge faces. Electromagnetics, 18(3), 289–313. Corrections in Electromagnetics, 19(5), 473 (1999).

P.YA. UFIMTSEV (1999): Backscatter, in Wiley Encyclopedia of Electrical and Electronics Engineering, John Wiley & Sons, Inc., New York.

P. YA. UFIMTSEV (2003): Theory of Edge Diffraction in Electromagnetics, Tech Science Press, Encino, California.

P. YA. UFIMTSEV (2006a): Improved theory of acoustic elementary edge waves. J. Acoust. Soc. Amer., 120(2), 631–635.

P. YA. UFIMTSEV (2006b): Improved physical theory of diffraction: Removal of the grazing singularity,

IEEE Trans. Antennas Propagat., 54(10), 2698–2702.

N.J. WILLIS (1991): Bistatic Radars, Artech House, Boston–London.

H.H. WITTE AND K. WESTPFAHL (1970): Hochfrequente Schallbeugung an der Kreisblende: numerische Ergebnisse. Annalen der Physik, Folge 7, Band 25, Heft 4, 375–382.

P. WOLF (1967): A new approach to edge diffraction, SIAM J. Appl. Math., 15(6), 1434–1469.

TEAM LinG


References 319

ADDITIONAL REFERENCES RELATED TO THE PTD CONCEPT: APPLICATIONS, MODIFICATIONS, AND DEVELOPMENTS

A. ALTINTAS, O.M. BUYUKDURA, AND P.H. PATHAK (1994): An extension of the PTD concept for aperture radiation problems. Radio Sci., 29(6), 1403–1407.

D.J. ANDERSH, M. HAZLETT, S.W. LEE, D.D. REEVES, D.P. SULLIVAN, AND Y. CHU (1984): X-PATCH: A highfrequency electromagnetic-scattering code and environment for complex three-dimensional objects.

IEEE Antennas Propagat. Mag., 36(1), 65–69.

T.AKASHI, M. ANDO, AND T. KINOSHITA (1989): Effects of multiple diffraction in PTD analysis of scattered field from a conducting disk. Trans. IEICE, E72(4), 259–261.

M.ANDO (1990): Modified physical theory of diffraction, in E. YAMASHITA, Ed., Analysis Methods for EM Wave Problems, Artech House, Boston–London.

M.ANDO AND T. KINOSHITA (1989): PO and PTD analysis in polarization prediction for plane wave diffraction from large circular disk. Digests of 1989 IEEE AP/S International Symposium, June 26–30, 1989, San Jose, California.

M.ANDO AND T. KINOSHITA (1989): Accuracy comparison of PTD and PO for plane wave diffraction from

large circular disk. Trans. IEICE, E72(11), 1212–1218.

J.S. ASVESTAS (1995): A class of functions with removable singularities and their application in the physical theory of diffraction. Electromagnetics, 15(2), 143–155.

P.BALLING (1995): Fringe-currents effects on reflector antenna crospolarization. Electromagnetics, 15(1), 55–69.

S.S. BOR, S.Y. YANG, S.M. YETH, S.R. HWANG, AND C.C. HWANG (1996): Electromagnetic backscattering of helicopter rotor. Electromagnetics, 16(1), 63–74.

D.P. BOUCHE, J.J. BOUQUET, H. MANENE, AND R. MITTRA (1992): Asymptotic computation of the RCS of low observable axisymmetric objects at high frequency. IEEE Trans. Antennas Propagat., 40(10), 1165–1174.

D.P. BOUCHE, F.A. MOLINET, AND R. MITTRA (1995): Asymptotic and hybrid techniques for electromagnetic scattering. Proc. IEEE, 81(12), 1658–1684.

M. BOUTILLIER AND M.A. BLONDELL-FOURNIER (1995): CAD based high-frequency RCS computing code for complex objects: Sermat. Special issue on Radar Cross Section of Complex Objects. Annales des Telecommunications, 50(5–6), 536–539.

O. BREINBJERG AND E. JORGANSEN (1999): Slope diffraction in the geometrical and physical theories of diffraction. USNC/URSI Meeting, July 11–16, Orlando, Florida, Digests, p. 90.

R.T. BROWN (1984): Treatment of singularities in the physical theory of diffraction. IEEE Trans. Antennas Propagat., AP-32(6), 640–641.

C.C. CHA, J. MICHELS AND E. STARCZEWSKI (1988): An analysis of airborne vehicles dependence on frequency and bistatic angle. Proc. 1988 IEEE National Radar Conference, pp. 214–219. April 20–21, 1988. University of Michigan, Ann Arbor.

P. CORONA, A. DE BONITATIBUS, G. FERRARA, AND C. GENNARELLI (1993): Accurate evaluation of backscattering by 90dihedral corners. Electromagnetics, 13(1), 23–36.

M.G. COTE, M.B. WOODWORTH, AND A.D. YAGHJIAN (1988): Scattering from perfectly conducting cube.

IEEE Trans. Antennas Propagat., 36(9), 1321–1329.

M. DOMINGO, R.P. TORRES, AND M.F. CATEDRA (1994): Calculation of the RCS from the interaction of edges and faces. IEEE Trans. Antennas Propagat., 42(6), 885–898.

M. DOMINGO, F. RIVES, J. PEREZ, R.P. TORRES, AND M.F. CATEDRA (1995): Computation of the RCS of complex bodies modeled using NURBS surfaces. IEEE Trans. Antennas Propagat., 37(6), 36–47.

D.W. DUAN, Y. RAHMAT-SAMII, AND J.P. MAHON (1991): Scattering from a circular disk: Comparative study of PTD and GTD techniques. Proc. IEEE, 79(10), 1472–1480.

D.D. GABRIELYAN, O.M. TARASENKO, AND V.V. SHATSKYI (1991): Ispol’zovanie predstavleniya kraevykh voln v sochetanii s metodom integral’nykh uravnenyi pri reshenii zadach difraktsii na ideal’no provodyaschikh telakh slozhnoi formy [Usage of the edge-wave representation combined with the method of integral equations to solve problems of diffraction by ideally conducting bodies with a

TEAM LinG