Файл: С.Н. Гринфельд Физические основы электроники уч. пособие.doc
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 29.07.2024
Просмотров: 652
Скачиваний: 1
СОДЕРЖАНИЕ
С.Н. Гринфельд физические основы электроники
1. Электропроводность полупроводников
1.1. Строение и энергетические свойства кристаллов твердых тел
1.2. Электропроводность собственных полупроводников
1.3. Электропроводность примесных полупроводников
1.4. Дрейфовый и диффузионный токи в полупроводниках
2. Электронно-дырочный переход
2.1. Электронно-дырочный переход при отсутствии внешнего напряжения
2.2. Электронно-дырочный переход при прямом напряжении
2.3. Электронно-дырочный переход при обратном напряжении
2.4. Вольт-амперная характеристика электронно- дырочного перехода. Пробой и емкость p-n-перехода
3.1. Общие характеристики диодов
4. Полупроводниковые транзисторы
4.1.2. Принцип действия транзистора
4.1.3. Схемы включения транзисторов
4.1.5. Влияние температуры на статические характеристики бт
4.2.1. Полевые транзисторы с управляющим p-n переходом Структура и принцип действия пт
Схемы включения полевого транзистора
Температурная зависимость параметров птуп
4.2.2. Полевые транзисторы с изолированным затвором
Структуры пт с изолированным затвором
Статические характеристики мдп-транзистора с индуцированным каналом
Статическая характеристика передачи (или сток – затвор)
Статические характеристики мдп-транзистора со встроенным каналом
Максимально допустимые параметры полевых транзисторов
5.2. Диодные тиристоры (динисторы)
5.4. Симметричные тиристоры (симисторы)
5.5. Зависимость работы тиристора от температуры
6.1. Классификация, основные характеристики и параметры усилителей
6.3. Обратные связи в усилителях
6.3.3. Влияние отрицательной ос на нелинейные искажения и помехи
6.3.4. Влияние отрицательной ос на частотные искажения
6.3.5. Паразитные ос и способы их устранения
6.5. Каскады предварительного усиления
6.5.3. Работа каскада с оэ по переменному току
6.5.5. Усилительный каскад на полевом транзисторе
6.5.6. Схема с ос (истоковый повторитель)
7.1. Определение усилителя постоянного тока. Дрейф нуля
7.2. Однотактные усилители прямого усиления
7.3. Дифференциальные усилители
7.3.2. Схемы включения дифференциального усилителя
7.3.3. Коэффициент ослабления синфазного сигнала
7.3.4. Разновидности дифференциальных усилителей
8. Определение и основные характеристики операционных услителей
8.1. Устройство операционных усилителей
8.2. Характеристики операционных усилителей
8.4. Применение операционных усилителей
Неинвертирующий усилитель на оу
И Рис. 8.12. Схема инвертирующего усилителянвертирующий усилитель
У Рис. 8.14. Схема усредняющего усилителясредняющий усилитель
Усилители переменного напряжения
9. Устройства сравнения аналоговых сигналов
10.3. Особенности интегральных схем как нового типа электронных приборов
О Рис. 1. Схема исследования характеристик транзистора по схеме с оЭписание лабораторной установки
Лабораторная работа 2 исследование однокаскадного усилителя с общим эмиттером
Описание лабораторной установки
Лабораторная работа 3 дифференциального усилителя постоянного тока
Описание лабораторной установки
Последовательность расчета усилителя
Последовательность Расчета усилителя в области низких частот
Софья наумовна гринфельд физические основы электроники Учебное пособие
Кроме степени интеграции, используют еще такой показатель, как плотность упаковки– количество элементов (чаще всего транзисторов) на единицу площади кристалла. Этот показатель, который характеризует, главным образом, уровень технологии, в настоящее время составляет до 500 - 1000 элементов на 1 мм2.
10.2.3. Гибридные ис
Пленочные, а значит, и гибридные ИС в зависимости от технологии изготовления делятся на толсто- и тонкопленочные.
Толстопленочные ГИС(обозначим их ТсГИС) изготавливаются весьма просто. На диэлектрическую пластинку-подложку наносят пасты разного состава. Проводящие пасты обеспечивают межсоединения элементов, обкладки конденсаторов и выводы к штырькам корпуса; резистивные – получение резисторов; диэлектрические – изоляцию между обкладками конденсаторов и общую защиту поверхности готовой ГИС. Каждый слой должен иметь свою конфигурацию, свой рисунок. Поэтому при изготовлении каждого слоя пасту наносят через свою маску (трафарет) с окнами в тех местах, куда должна попасть паста данного слоя. После этого приклеивают навесные компоненты и соединяют их выводы с контактными площадками.
Тонкопленочные ГИС(обозначим их ТкГИС) изготавливаются по более сложной технологии, чем ТсГИС. Классическая тонкопленочная технология характерна тем, что пленки осаждаются на подложку из газовой фазы. Вырастив очередную пленку, меняют химический состав газа и, тем самым, электрофизические свойства следующей пленки. Таким образом, поочередно получают проводящие, резистивные и диэлектрические слои. Конфигурация (рисунок) каждого слоя определяется либо трафаретом, как в случае ТсГИС, либо маской, подобно окисной маске в полупроводниковых ИС (см. рис.143).
Навесные элементы в ТкГИС, как и в ТсГИС, приклеивают на поверхность готовой пленочной части схемы и соединяют с соответствующими контактными площадками элементов.
Степень интеграции ГИС не может оцениваться так же, как в случае полупроводниковых ИС. Тем не менее, существует термин большая ГИС (или БГИС), который означает, что в состав ГИС в качестве навесных компонентов входят не отдельные транзисторы, а целые полупроводниковые ИС.
10.3. Особенности интегральных схем как нового типа электронных приборов
Поскольку ИС, подобно транзистору, представляет собой конструктивное единое целое, выполняет определенную функцию и должна удовлетворять определенным требованиям при испытаниях, поставках и эксплуатации, она относится к разряду электронных приборов. Однако по сравнению с диодом, транзистором и т.п. ИС является качественно новым типом прибора.
Первая– главнаяособенностьИС как электронного прибора состоит в том, что она самостоятельно выполняет законченную, часто весьма сложную функцию, тогда как элементарные электронные приборы выполняют аналогичную функцию только в ансамбле с другими компонентами. Например, отдельный транзистор не может обеспечить усиление сигнала или запоминание информации. Для этого нужно из нескольких транзисторов, резисторов и других компонентов собрать (спаять) соответствующую схему. В микроэлектронике же указанные функции выполняются одним прибором – интегральной схемой. Она может быть усилителем, запоминающим устройством и т.п.
ВторойважнойособенностьюИС является то, что повышение функциональной сложности этого прибора по сравнению с элементарными не сопровождается ухудшением какого-либо из основных показателей (надежности, стоимости и т.п.). Более того, все эти показатели улучшаются.
Поскольку габариты и масса простых и средних ИС близки к габаритам и массе дискретных транзисторов, то можно считать, что в первом приближении выигрыш по этим показателям при переходе от дискретных схем к интегральным определяется степенью интеграции и может достигать сотен и тысяч раз.
Поскольку надежность работы полупроводникового прибора в аппаратуре определяется, прежде всего, количеством паяных и (в меньшей степени) сварных соединений, то ИС, у которых межсоединения элементов осуществляются путем металлизации (т.е. без пайки и сварки), обладают заведомо повышенной надежностью по сравнению с дискретными схемами, выполняющими ту же функцию. По мере увеличения степени интеграции этот выигрыш возрастает.
Поскольку все элементы ИС изготавливаются в едином технологическом цикле, то количество технологических операций по их изготовлению не намного превышает количество операций по изготовлению отдельного транзистора. Поэтому стоимость ИС при прочих равных условиях близка к стоимости одного транзистора. Значит, в зависимости от степени интеграции (или, точнее, от плотности упаковки), стоимость одного элемента ИС по сравнению со стоимостью аналогичного дискретного компонента может быть в сотни раз меньше. Такое же соотношение существует между стоимостью ИС и стоимостью аналогичной схемы, выполненной на дискретных компонентах.
Третья особенностьИС состоит в предпочтительности активных элементов перед пассивными – принцип, диаметрально противоположный тому, который свойствен дискретной транзисторной технике. В последней активные компоненты, особенно транзисторы, наиболее дорогие, и потому оптимизация схемы при прочих равных условиях состоит в уменьшении количества активных компонентов. В ИС дело обстоит иначе: у них задана стоимость не элемента, а кристалла; поэтому целесообразно размещать на кристалле как можно больше элементов с минимальной площадью. Минимальную площадь имеют активные элементы – транзисторы и диоды, а максимальную – пассивные. Следовательно, оптимальная ИС – это ИС, у которой сведены к минимуму количество и номиналы резисторов и, особенно, конденсаторов.
Точный выигрыш в габаритах и массе трудно оценить теоретическим расчетом, так как ИС имеют другие типоразмеры корпусов и большее число выводов, чем элементарные компоненты.
Четвертая особенностьИС связана с тем, что смежные элементы расположены друг от друга на расстоянии, измеряемом в микрометрах или долях микрометра. На таких малых расстояниях различие электрофизических свойств материала маловероятно, а, следовательно, маловероятен и значительный разброс параметров у смежных элементов. Иначе говоря, параметры смежных элементов взаимосвязаны (коррелированы). Эта корреляция сохраняется и при изменении температуры: у смежных элементов температурные коэффициенты параметров практически одинаковы. Корреляция между параметрами смежных элементов используется при проектировании некоторых ИС с целью снизить влияние разброса параметров и изменений температуры.
Гибридные ИС тоже представляют собой тип электронных приборов. Однако наличие навесных компонентов делает их менее специфичными, чем полупроводниковые ИС. Остается в силе фундаментальная черта всякой ИС – функциональная сложность прибора, что, как и при использовании полупроводниковых ИС, качественно меняет структуру электронной аппаратуры. Спецификой ГИС как прибора могут быть либо высокие номиналы резисторов и конденсаторов, недостижимые в полупроводниковых ИС, либо прецизионность резисторов, либо, наконец, повышенная функциональная сложность. Гибридные ИС – это гибкий, дешевый, оперативно проектируемый тип ИС, хорошо приспособленный к решению специальных, частных задач.
ЛабораторНые рабоТы Лабораторная работа 1 исследование статистических характеристик биполярного транзистора
Цель работы:изучить методику экспериментального исследования статических характеристик биполярного транзистора и определения по нимh-параметров.
О Рис. 1. Схема исследования характеристик транзистора по схеме с оЭписание лабораторной установки
Работа выполняется на универсальной установке 87Л-01 (рис. 1).
Ток базы Iб(входной для данной схемы) подается от генератора тока ГТ, напряжениеUкэ(выходное) – от генератора напряжения ГН2. Измерительные приборы, а также пределы их измерений выбираются исходя из паспортных данных исследуемого транзистора.
Порядок выполнения работ
Изучить принцип действия транзистора, обратив внимание на его основное свойство – способность усиливать электрические сигналы.
Выписать из справочника основные параметры исследуемого транзистора
Для исследования ВАХ транзистора собрать схему с ОЭ (см. рис. 1).
Снять семейство входных характеристик при напряженияхUкэ= 0 иUкэ= 10 В и управляющую характеристикупри напряженииUкэ=10В. НапряжениеUбэизменять от нуля до значения, при котором ток коллектора достигает значенияIк.доп для данного транзистора. Обе зависимости рекомендуется воспроизвести на одном графике, выбрав разные масштабы по оси токов.
Снять семейство выходных характеристик транзистора при трех значениях тока базы. Значения токовIБ, при которых снимаются выходные характеристики, определить так, чтобы наибольшее значениеIБсоответствовало значениюIК, близкому к 0,8IК.доп., а наименьшее значение – значению 0,4IК.доп.. Третье значениеIБвыбрать среднее между ними (следует помнить, что ток базы и ток коллектора связаны следующим соотношениемIб =Iк/h21э).
По экспериментальным данным построить характеристики.
-
Определить h-параметры транзистора в схеме с ОЭ. Параметрыh22э иh21э определяют по выходным, аh11эиh12э– по входным характеристикам.
Определение выходной проводимости транзистора в схеме с ОЭ h22э.