Файл: Ответы по коммунальной гигиене.docx

Добавлен: 17.02.2019

Просмотров: 10337

Скачиваний: 20

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.







Уровень воды



Желоба для сброса промывной воды



Рис. 5. Скорые фильтры

а - двухслойный фильтр, б - двухпоточный фильтр, в - контактный осветлитель



С целью ускорения фильтрации при конструировании новых филь­тров повышают их грязеемкость, под которой понимают массу заг­рязнений в килограммах, задержанных 1 м1 фильтрующей загрузки фильтра в течение фильтроцикла. К числу фильтров с повышенной грязеемкостью относятся фильтры с двухслойной загрузкой, двухпо­точные фильтры системы АКХ и двухпоточные фильтры ДДФ.

В фильтрах с двухслойной загрузкой (см рис 5, а) над слоем пес­ка 0,4—0,5 м насыпают слой дробленого антрацита или керамзита В таком фильтре верхний слой, состоящий из более крупных зерен, задерживает основную массу загрязнений, а песчаный - их остаток, прошедший через верхний слой Общая грязеемкость двухслойного фильтра в 2-2,5 раза больше грязеемкости обычного скорого фильт­ра. Плотность антрацита (керамзита) меньше плотности песка, по­этому после промывки фильтра послойное расположение загрузки восстанавливается самостоятельно. Скорость фильтрации в двухслой­ном фильтре 10-12 м/ч, что в 2 раза больше, чем в скором.

Принцип работы двухпоточных фильтров АКХ (см рис 5, б) за­ключается в том, что основная масса воды (70%) фильтруется снизу вверх, а меньшая часть (30%), как и в обычных фильтрах, - сверху вниз. Благодаря этому основная масса загрязнений задерживается в нижней наиболее крупнозернистой части фильтра, имеющей боль­шую грязеемкость. Толщина фильтрующего слоя в фильтре АКХ 1,45— 1,65 м. На глубине 0,5—0,6 м от поверхности фильтрующей загрузки устанавливается трубчатый дренаж, через который отводится про­фильтрованная вода.

При промывке фильтра АКХ сначала в течение 1 мин подают про­мывную воду в дренажное устройство для взрыхления верхнего слоя песка, затем в течение 5-6 мин — через распределительную систему, расположенную на дне фильтра. Грязная вода, как и в обычных фильт­рах, собирается в желобе и отводится в водосток. Фильгры ДДФ конст­руктивно отличаются от фильтров АКХ двухслойной загрузкой (антра­цит и песок, керамзит и песок) в наддренажном слое. В фильтрах АКХ и ДДФ задерживающая способность фильтрующей загрузки использу­ется по всей ее высоте, что позволяет повысить скорость фильтрации до 12—15 м/ч и увеличить производительность фильтра на 1 м2 поверх­ности в 2 раза. В практике водоподготовки с целью интенсификации работы очистных сооружений используется коагуляция в зернистой загрузке скорых фильтров (контактная коагуляция),описанная выше. Контактная коагуляция особенно эффективна при смешивании коагулянта с обрабатываемой водой непосредственно перед ее вве­дением в зернистую загрузку. При этом расход коагулянта снижается на 20%. Температура воды не влияет на контактную коагуляцию, хотя имеет большое значение при коагуляции в свободном объеме. При­менение контактной коагуляции целесообразно при низких концен­трациях взвеси в воде и отсутствии щелочного резерва. Сооружения, в которых используется метод контактной коагуляции, называются контактными осветлителями (см. рис. 5, в).


Для контактных осветлителей не нужно строить камеры хлопьеобразования и отстойники, что позволяет уменьшить объем соору­жений в 4-5 раз и сократить капитальные затраты. Раствор коагу­лянта вводят в воду перед ее подачей на фильтрацию.

Вода фильтруется в направлении убывающей крупности зерен, снизу вверх, благодаря чему основная часть загрязнений задержива­ется в нижних крупнозернистых слоях. Большая высота загрузки уве­личивает продолжительность фильтроцикла до 8 ч. Расчетная ско­рость фильтрования 5—6 м/ч. Скорость фильтрации на контактном осветлителе КФ-5 составляет 20 м/ч. Контактные осветлители удов­летворительно работают при осветлении воды, содержащей не более 150 мг/л взвешенных веществ (включая образующиеся вследствие коагулирования) и при цветности до 150 градусов.

В контактных осветлителях, в отличие от фильтров, осветленная вода находится над фильтрующей загрузкой, поэтому зеркало воды долж­но быть изолировано от помещения управления осветлителями. Этой цели служит остекленная перегородка на всю высоту помещения.

Очистные сооружения водопровода для осветления и обесцвечи­вания воды способны, кроме того, задержать до 90% находящихся в воде бактерий и вирусов. После осветления и обесцвечивания с по­мощью физических и физико-химических методов вода по органо­лептическим свойствам и химическому составу должна соответство­вать нормативам питьевой воды, но для достижения эпидемической безопасности необходимо обеззараживание.

14.Коагуляция воды, ее виды, условия проведения и гигиеническое значение.

Коагуляцией называется процесс укрупнения, агрегации коллоид­ных и тонкодисперсных примесей воды вследствие их взаимного сли­пания под действием сил молекулярного притяжения.

Коагуляция примесей воды позволяет ускорить осветление и обес­цвечивание. Коагуляция происходит под влиянием химических реа­гентов - коагулянтов, которые либо нарушают агрегативную устой­чивость примесей воды, либо образуют коллоиды, сорбирующие при­меси воды. В качестве коагулянтов чаще всего используют соли алюминия или железа.

В практике водоподготовки известны два вида коагуляции — коа­гуляция в толще зернистой загрузки фильтра (контактная коагуля­ция) и коагуляция, происходящая в камерах хлопьеобразования (ко­агуляция в свободном объеме).

Механизм контактной коагуляции — нарушение агрегативной ус­тойчивости коллоидных примесей воды в результате устранения или снижения до очень малых значений заряда мицеллы. При добавле­нии к обрабатываемой воде коагулянта, например сульфата алюми­ния, происходит его гидролиз с образованием трехвалентного ио­на алюминия:

A12(S04)3 + 6Н20 = 2AF + 3S042 + 6Н+ + 60Нˉ.

Ионы алюминия нейтрализуют заряд коллоидных частиц приме­сей воды и тем самым нарушают их агрегативную устойчивость. Ли­шенные устойчивости коллоидные частицы, проходя с потоком воды через фильтр (контактный осветлитель), адсорбируются на поверх­ности частиц зернистой загрузки фильтра под влиянием сил межмолекулярного взаимодействия. Это приводит к осветлению и обесцве­чиванию воды.


Механизм коагуляции в свободном объеме имеет иной характер. Так же как и при контактной коагуляции, введение в обрабатывае­мую воду сульфата алюминия обусловливает нейтрализацию заряда природных коллоидов воды и снижение их агрегативной устойчиво­сти. Этот процесс протекает очень быстро и заканчивается при уста­новлении равновесия между катионами коагулянта и мицеллами при­родных коллоидов. После этого начинается образование гидроксида алюминия как в результате гидролиза:

А1 2(S04)3+ 6Н20 = 2А1(ОН)з + 3H2S04,

так и путем взаимодействия коагулянта с присутствующими в воде карбонатами и бикарбонатами (резервная щелочность воды):

A12(S04)j +ЗСа(НС03)2 = 2А1(ОН)з + 3CaS04+ 6С02.

Гидроксид алюминия имеет коллоидную структуру (золь), вслед­ствие чего обладает развитой поверхностью, сорбирующей примеси воды, в том числе природные коллоиды, потерявшие агрегативную устойчивость.

Гидролиз коагулянта является обратимой реакцией, и на его пол­ноту влияет активная реакция воды. Понижение pH подавляет гид­ролиз солей слабых оснований, каким является сульфат алюминия. При повышении pH образуется отрицательно заряженный алюминат- ион [А 102] , не приводящий к коагуляции. Приемлемое для гидроли­за значение pH 4,3-7,6, оптимальное - 5,5-6,5.

На эффективность коагуляции влияют также количество грубой взвеси, частицы которой служат своеобразными «ядрами коагуля­ции», интенсивность перемешивания, температура воды.

Очевидно, что для вод различного состава нужны разные до­зы коагулянта. Предварительный расчет оптимальной дозы произво­дят с учетом щелочности и цветности обрабатываемой воды. Однако сложность физико-химических процессов, приводящих к коагуля­ции, заставляет уточнять предварительно рассчитанную дозу опыт­ным путем.

Для ускорения коагуляции и интенсификации работы очистных сооружений применяют так называемые флоккулянты — высокомо­лекулярные синтетические соединения. Различают флоккулянты ани­онного (полиакриламид, К-4, К-6, активированная кремниевая кис­лота) и катионного (например, ВА-2) типа. Применение флоккулянтов анионного типа требует предварительной обработки воды коагулянтом, использование катионных флоккулянтов — предвари­тельного введения коагулянта не предполагает. Флоккулянты позво­ляют ускорить коагуляцию, увеличить скорость движения воды в отстойниках, уменьшить время отстаивания путем увеличения ско­рости осаждения хлопьев, повысить скорость фильтрования и продол­жительность фильтроцикла.

Ассортимент веществ с флоккулирующими свойствами постоян­но расширяется. Для применения в централизованном питьевом во­доснабжении допускаются лишь флоккулянты, прошедшие гигиени­ческую апробацию и имеющие нормированные ПДК.

В составе сооружений для коагуляции в свободном объеме долж­ны быть дозатор, смеситель и камера хлопьеобразования. Назначе­ние сооружений ясно из их названия. Существует множество конст­рукций, различающихся материалоемкостью, сложностью монтажа и эксплуатации, эффективностью работы и производительностью.


Коагуляция только подготавливает воду для дальнейшей обработ­ки — осветления и обесцвечивания и в этом смысле не является са­мостоятельным процессом. В ряде случаев в схеме подготовки пить­евой воды коагуляцию не обозначают.



15.Гигиеническое значение обеззараживания питьевой воды: методы и их характеристика.

Гигиенические задачи обеззараживания питьевой воды

Часть патогенных бактерий и вирусов проникает через очистные сооружения и содержится в фильтрованной воде. Эффективность освобождения воды от микробного загрязнения на этапах очистки во многом зависит от характера взвеси, параметры которой весьма непостоянны. Для создания надежного и управляемого барьера на пути возможной передачи через воду кишечных инфекций применяется ее обеззараживание, т.е. уничтожение живых и вирулентных патогенных микроорганизмов — бактерий и вирусов.

В практике коммунального водоснабжения используют реагентные (хлорирование, озонирование, воздействие препаратами серебра, меди, йода) и безреагентные (ультрафиолетовые лучи, воздействие импульсными электрическими разрядами, гамма-лучами и др.) методы обеззараживания воды. При выборе метода обеззараживания следует учитывать опасность для здоровья человека остаточных количеств биологически активных веществ, применяемых для обеззараживания или образующихся в процессе обеззараживания, возможность изменения физико-химических свойств воды (например, образование свободных радикалов). Важными характеристиками метода обеззараживания являются также его эффективность в отношении различных видов микронаселения воды, зависимость эффекта от условий среды (pH, температура воды).

Химические (реагентные ) методы

Хлорирование воды в настоящее время получило наиболее широкое распространение благодаря многим техническим, гигиеническим и экономическим преимуществам перед другими методами обеззараживания.

Для хлорирования воды используют различные соединения хлора и разные способы их взаимодействия с водой. Наибольшее распространение получил жидкий хлор, который поступает на водопроводные станции в цистернах или баллонах под высоким давлением. Он представляет собой маслянистую темно-зеленую жидкость плотностью 1,4 при 15 °С. При снижении давления жидкий хлор переходит в газообразный, хорошо растворяющийся в воде. Взаимодействие растворенного хлора с водой протекает по следующим реакциям:

СL2 + Н 20 = НСL + НОСL,

НОСL = Н+ + ОСL?.

Степень диссоциации хлорноватистой кислоты зависит от активной реакции воды. Обеззараживающее действие оказывают гипохлоритный ион ОСL и недиссоциированная хлорноватистая кислота.

Кроме жидкого хлора, в практике обеззараживания воды используют ряд его соединений, из которых практическое значение для централизованных систем питьевого водоснабжения имеет диоксид хлора (С102). Диоксид хлора - газ желто-зеленого цвета, хорошо растворимый в воде. При 4 °С в воде может раствориться до 20 объемов диоксида хлора. Диоксид хлора в воде практически не гидролизуется, действующим началом является молекула вещества.


Неорганические хлорамины (монохлорамин NH2С1 и дихлорамин NHCl2) широко используют при обеззараживании воды на водопроводах.

Гипохлориты кальция и натрия представляют собой соли хлорноватистой кислоты. Действующим началом гипохлоритов является гипохлоритный ион (ОС1). Хлорная известь— комплексное соединение, в котором ион кальция связан одновременно с анионами хлорноватистой и хлористоводородной кислот. Свежий технический продукт содержит не более 35% активного хлора. При хранении, особенно в сырости и на свету, хлорная известь теряет активность. Действующим началом гипохлоритов является гипохлоритный ион.

Различная бактерицидность хлорсодержащих препаратов связана с выраженностью их окислительных свойств. Современное представление о сущности окислительно-восстановительных реакций связывается с переносом электронов в ряду взаимодействующих веществ. Окислительно-восстановительный потенциал хлорсодержащих препаратов, как и их бактерицидная активность, возрастают в ряду хлорамин>хлорная известь>хлоргаз>диоксид хлора.

Процесс взаимодействия хлора с бактериальной клеткой в воде проходит две стадии: сначала обеззараживающий агент диффундирует внутрь бактериальной клетки, а затем вступает в реакцию с белками цитоплазмы, ядерным аппаратом клетки, а также с энзимами клетки, в первую очередь с дегидрогеназами, блокируя SH-группы. В экспериментах показана прямая корреляция подавления активности дегидрогеназ с бактерицидным эффектом. Препараты хлора воздей­ствуют в основном на вегетативные формы бактерий. Спороцидный эффект проявляется в эксперименте при высоких концентрациях хлора и длительном контакте, нереальных для технологии водоподготовки. Высокорезистентны к действию хлора вирусы, а также цисты простейших и яйца гельминтов.

На эффективность хлорирования влияет ряд факторов, связанных с биологическими особенностями микроорганизмов, бактерицидными свойствами препаратов хлора, состоянием водной среды, условиями, в которых производится обеззараживание.

Скорость процесса обеззараживания воды определяется диффузией обеззараживающего агента внутрь клетки и отмиранием клеток в результате нарушения их метаболизма. Скорость обеззараживания возрастает с увеличением концентрации обеззараживающего вещества в воде, повышением ее температуры и переходом обеззараживающего агента в недиссоциированную форму, поскольку диффузия молекул через мембрану клетки происходит быстрее, чем гидратированных ионов, образующихся при диссоциации.

Эффективность хлорирования в большой мере зависит и от первоначального количества микробов в исходной воде:

N=No10-kt,


где N0—начальное число бактерий; N —число бактерий после t минут контакта с хлором; к — константа скорости отмирания бактерий.