Файл: Аналитические методы. Шпоры.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 03.09.2020

Просмотров: 959

Скачиваний: 4

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

1.Общая характеристика спектральных методов анализа

2 и 3. Основные характеристики электромагнитного излучения.

3 и 2. Волновые и корпускулярные свойства электромагнитного излучения.

4 и 10. Абсорбционная спектроскопия

10 и 4. Абсорбционная спектроскопия

11. Практическое применение спектрофотометров для качественного и количественного анализа

13. Оптические методы анализа

14. Люминесцентный анализ.

15. Рефрактометрия. Преломление света на границе двух оптических сред.

19. Сущность метода потенциометрии

20. Кондуктометрическое титрование.

21. Практическое применение вольтамперометрии в анализе объектов окружающей среды.

24. Хроматографические методы анализа

25. Радиометрические и радиохимические методы анализа.

26 Приборы дозиметрического контроля.

27. Методы биоиндикации в экоаналитическом контроле

28. Экологическая экспертиза объектов окружающей среды

3 и 2. Волновые и корпускулярные свойства электромагнитного излучения.

Свет имеет двойственную природу: волновую и корпускулярную.

Волновые характеристики — это частота колебаний, длина волны и волновое число. Корпускулярная характеристика — это энергия квантов. Частота колебаний (V) показывает число колебаний в одну секунду и измеряется герцах, мегагерцах. Длина волны lв, — кратчайшее расстояние между двумя точками в пространстве, на котором фаза гармонической электромагнитной волны меняется на 360°. Фаза — это состояние (стадия) периодического процесса.




4 и 10. Абсорбционная спектроскопия

Абсорбционная спектроскопия — метод изучения энергетических состояний квантовых систем путём исследования спектров поглощения электромагнитного излучения. В абсорбционной спектроскопии используют излучение непрерывного спектра. Через слой исследуемого вещества пропускают излучение непрерывного спектра, часть которого поглощается. Поглощаются волны с длинами, характерными для энергетических состояний исследуемого вещества. Применяется для определения концентрации веществ в растворах.[1] Обладает рядом ценных качеств: возможность одновременного получения качественных и количественных данных, большая информация о химической природе вещества, высокая скорость анализа, высокая чувствительность метода, возможность анализа веществ во всех агрегатных состояниях, возможность анализа смесей без их разделения на компоненты, возможность многократного использования пробы для повторного исследования, позволяет исследовать микроскопические объекты, возможность применения ЭВМ для обработки данных.





5 и 12. Атомно-эмиссионная спектроскопия (спектрометрия)

АЭС или атомно-эмиссионный спектральный анализ — совокупность методов элементного анализа, основанных на изучении спектров испускания свободных атомов и ионов в газовой фазе (см. группу методов оптической спектроскопии). Обычно эмиссионные спектры регистрируют в наиболее удобной оптической области длин волн от ~200 до ~1000 нм. (Для регистрации спектров в области <200 нм требуется применение вакуумной спектроскопии, чтобы избавиться от поглощения коротковолнового излучения воздухом. Для регистрации спектров в области >1000 нм требуются специальные инфракрасные или микроволновые детекторы.)

АЭС — способ определения элементного состава вещества по оптическим линейчатым спектрам излучения атомов и ионов анализируемой пробы, возбуждаемым в источниках света. В качестве источников света для атомно-эмиссионного анализа используют пламя горелки или различные виды плазмы, включая плазму электрической искры или дуги, плазму лазерной искрыиндуктивно-связанную плазмутлеющий разряд и др.

АЭС — самый распространённый экспрессный высокочувствительный метод идентификации и количественного определения элементов примесей в газообразных, жидких и твердых веществах, в том числе и в высокочистых. Он широко применяется в различных областях науки и техники для контроля промышленного производства, поисках и переработке полезных ископаемых, в биологических, медицинских и экологических исследованиях и т.д. Важным достоинством АЭС по сравнению с другими оптическими спектральными, а также многими химическими и физико-химическими методами анализа, являются возможности бесконтактного, экспрессного, одновременного количественного определения большого числа элементов в широком интервале концентраций с приемлемой точностью при использовании малой массы пробы.

Процесс атомно-эмиссионного спектрального анализа состоит из следующих основных звеньев:

  1. Пробоподготовка (подготовка образца)

  2. Испарение анализируемой пробы (если она не газообразная);

  3. Диссоциация — атомизация её молекул;

  4. Возбуждение излучения атомов и ионов элементов пробы;

  5. Разложение возбужденного излучения в спектр;

  6. Регистрация спектра;

  7. Идентификация спектральных линий — с целью установления элементного состава пробы (качественный анализ);

  8. Измерение интенсивности аналитических линий элементов пробы, подлежащих количественному определению;

  9. Нахождение количественного содержания элементов с помощью установленных предварительно градуировочных зависимостей.

Пламенная фотометрия — один из видов атомно-эмиссионной спектроскопии. Применяется для определения щелочныхщёлочноземельных и некоторых других элементов по атомным спектрам или молекулярным полосам. Источником возбуждения служит пламя водородаацетиленасветильного газа. Метод обладает высокой чувствительностью, быстротой, точностью, позволяет определять элементы в солях, смесях, растворах, минералах, биологических объектах.





6 и 7. Закон Бугера-Ламберта-Бера

Это физический закон, определяющий ослабление параллельного монохроматического пучка света при распространении его в поглощающей среде.

Закон выражается следующей формулой:

Показатель поглощения определяется свойствами вещества и в общем случае зависит от длины волны λ поглощаемого света. Эта зависимость называется спектром поглощения вещества.

Закон Бугера — Ламберта — Бера экспериментально открыт французским учёным Пьером Бугером в 1729 году, подробно рассмотрен немецким учёным И. Г. Ламбертомв 1760 году и в отношении концентрации C проверен на опыте немецким учёным А. Бером в 1852 году.