Файл: 1. Классификация сварки металловлюс газовшлаковый 4 Термический класс сварки. 8.docx
Добавлен: 08.11.2023
Просмотров: 153
Скачиваний: 4
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
СОДЕРЖАНИЕ
Введение 2
1. Классификация сварки металловлюс газовшлаковый 4
1.2. Термический класс сварки. 8
2.2. Термомеханический класс сварки 18
2.3. Механический класс сварки 25
Сварка трением. 26
Сварка взрывом. 27
Ультразвуковая сварка. 27
3.ТБ и ПБ при сварочно-монтажных работах. 27
ЗАКЛЮЧЕНИЕ 29
4. ПРактическая часть 31
Список литературы 32
Введение
Сварка - это технологический процесс получения неразъёмного соединения материалов за счёт образования атомной связи. В своей работе я рассмотрю сварку металлов и сплавов, чаще применяемую в электротехнике.
Сварка применяется для соединения металлов и их сплавов, термопластичных пластмасс, неметаллических материалов (полиэтелен, полистирол, капрон, графит, керамика).
При сварке используются различные источники энергии: электрическая дуга, газовая сварка, лазерное излучение, электронный луч, трение, ультразвук. Развитие технологий позволяет в настоящее время осуществлять сварку не только в условиях промышленных предприятий, но в полевых и монтажных условиях в степи, море, под водой и даже в космосе. Процесс сварки сопряжен с опасностью возгораний; отравлением вредными газами; поражением электрическим током; поражением глаз и частей тела тепловым, ультрафиолетовым, инфракрасным излучением.
Остановимся на физической основе сварки.
Процесс создания сварного соединения протекает в две стадии:
1. На первой стадии осуществляется сближение поверхности свариваемых материалов на расстояние действия сил межатомного взаимодействия. Образование физического контакта между соединяемыми кромками по всей поверхности достигается либо за счёт расплавления материала, либо в результате пластических деформаций, возникающих в результате прикладываемого давления;
2. На второй стадии осуществляется электронное взаимодействие между атомами соединяемых поверхностей. В результате поверхность раздела между деталями исчезает и образуется либо атомная металлическая связи (свариваются металлы), либо ковалентная или ионная связи (при сварке диэлектриков или полупроводников);
3. Процесс сварки завершается диффузией.
Таким образом, суть физического процесса сварки состоит в следующем:
Поверхностные атомы куска металла имеют свободные, ненасыщенные связи, которые захватывают всякий атом или молекулу, приблизившуюся на расстояние действия межатомных сил. Сблизив поверхности двух кусков металла на расстояние действия межатомных сил или, говоря проще, до соприкосновения поверхностных атомов, получим по поверхности соприкосновения сращивание обоих кусков в одно монолитное целое с прочностью соединения цельного металла, поскольку внутри металла и по поверхности соединения действуют те же межатомные силы.
Исходя из физической сущности процесса образования сварного соединения, различают две группы сварки: сварка плавлением, сварка давлением. Самое широкое распространение получили различные способы электрической сварки плавлением, а ведущее место занимает дуговая сварка, при которой источником теплоты служит электрическая дуга.
1. Классификация сварки металловлюс газовшлаковый
Принято все существующие способы сварки делить на две большие группы:
Сварка плавлением.
К сварке плавлением относятся виды сварки, осуществляемой плавлением без приложенного давления. Основными источниками теплоты при сварке плавлением являются сварочная дуга, газовое пламя, лучевые источники энергии и «джоулево тепло». В этом случае расплавы соединяемых металлов объединяются в общую сварочную ванну. При охлаждении происходит кристаллизация расплава в литой сварочный шов.
Сварки давлением.
К сварке давлением относятся операции, осуществляемые при приложении механической энергии в виде давления. В результате металл деформируется и начинает течь, подобно жидкости. Металл перемещается вдоль поверхности раздела, унося с собой загрязненный слой. Таким образом, в непосредственное соприкосновение вступают свежие слои материала, которые и вступают в химическое взаимодействие.
Так же, все виды сварки можно разделить по виду энергии, используемой для нагрева металла в процессе сварки. По этому признаку все существующие способы можно разделить на 3 основных класса:
Термический класс сварки.
К термическому классу сварки относятся соединения, получаемые местным плавлением поверхностей при помощи тепловой энергии. Тепло для сварки можно получить при помощи электрической дуги (дуговая сварка), от сгорания газовой смеси (газовая сварка), электронным или фотонным лучом (электронно-лучевая или лазерная сварка), сжиганием термитной смеси (термитная сварка), при прохождении электрического тока через расплавленный металл (электрошлаковая сварка) и т.д.
Термомеханический класс сварки.
К термомеханическому классу относят кузнечную, контактную, диффузионную и прессовую сварку, использующую одновременно энергию механического и термического воздействия.
Механический класс сварки
В механическом классе сварки соединение поверхностей осуществляется механическим воздействием (давление, трение, взрыв и т.д.) без использования внешнего источника тепла.
В зависимости от способа подачи металла и флюсов к месту сварки, осадки деталей и управление источником теплоты различают способы сварки:
Ручной
Полуавтоматический
Автоматический
На рис. представлена наглядная классификация всех способов сварки по различным критериям.
Рис.
Все виды сварки классифицируются по следующим техническим признакам:
-по способу защиты металла в зоне сварки (в воздухе, в вакууме, под флюсом, в пене, в защитном газе, с комбинированной защитой);
-по непрерывности процесса (непрерывная, прерывистая);
-по степени механизации (ручная, механизированная, автоматизированная, автоматическая);
-по типу защитного газа (в активных газах, в инертных газах);
-по характеру защиты металла в зоне сварки (со струйной защитой, в контролируемой атмосфере).
1.2. Термический класс сварки.
Электрическая дуговая сварка в настоящее время является важнейшим видом сварки металлов. Наибольший объём среди других видов сварки занимает ручная дуговая сварка. Источником тепла в данном случае служит электрическая дуга между двумя электродами, одним из которых являются свариваемые заготовки. Электрическая дуга является мощным разрядом в газовой среде. Ручная дуговая сварка является универсальным технологическим процессом. С её помощью можно производить сварочные работы в любом пространственном положении, из различных марок сталей, даже при отсутствии необходимого оборудования. Данный вид сварки применяется для выполнения коротких и криволинейных швов в труднодоступных местах, а также при монтажных работах.
Рис. Ручная электродуговая сварка
Это сварка плавлением штучными электродами, при которой подача электрода и перемещение дуги вдоль свариваемых кромок производится вручную. Дуга горит между стержнем электрода и основным металлом. Под действием теплоты дуги электрод и основной металл плавятся, образуя металлическую сварочную ванну. Капли жидкого металла с расплавляемого электродного стержня переносятся в ванну через дуговой промежуток. Вместе со стержнем плавится покрытие электрода, образуя газовую защиту вокруг дуги и жидкую шлаковую ванну на поверхности расплавленного металла.
Металлическая и шлаковая ванны вместе образуют сварочную ванну. По мере движения дуги металл сварочной ванны затвердевает и образует сварной шов. Жидкий шлак по мере остывания образует на поверхности шва твёрдую шлаковую корку, которая удаляется после остывания шва.
Для обеспечения заданного состава и свойств шва сварку выполняют покрытыми электродами, к которым предъявляют специальные требования (стальные покрытые электроды для ручной дуговой сварки и наплавки изготовляют в соответствии с ГОСТ 9467-75).
Сварочный пост для ручной дуговой сварки оснащается источником питания, токоподводом, необходимыми инструментами, принадлежностями и приспособлениями.
Сварочные посты могут быть стационарными и передвижными. К стационарным относят посты, расположенные в цехе, преимущественно в отдельных сварочных кабинах, в которых сваривают изделия небольших размеров. Передвижные сварочные посты, как правило, применяют при монтаже крупногабаритных изделий (трубопроводов, металлоконструкций, и т.д.) и ремонтных работах. При этом часто используют переносные источники питания. В зависимости от свариваемых материалов и применяемых электродов для ручной дуговой сварки применяют источники переменного или постоянного тока с крутопадающей характеристикой.
Основным рабочим инструментом сварщика при ручной сварке служит электрододержатель, который предназначен для зажима электрода и провода сварочного тока. Применяют электрододержатели пружинного, пластинчатого и винтового типов.
Согласно ГОСТ 14651-78 электрододержатели выпускаю трёх типов в зависимости от силы сварочного тока: 1 типа - для тока 125 А; 2- 125-315 А; 3-315-500 А.
Для подвода тока от источника питания к электрододержателю и изделию используют сварочные провода. Сечения проводов выбирают по установленным нормативам для электротехнических установок (5-7 А/мм2).
Процесс зажигания дуги состоит из трех стадий:
короткое замыкание электрода на заготовку
отвод электрода на 3-5 мм
возникновение устойчивого дугового разряда
Короткое замыкание производится с целью разогрева электрода (катода) до температуры интенсивной экзо-эмиссии электронов. На второй стадии эмитированные электродом электроны ускоряются в электрическом поле и вызывают ионизацию газового промежутка «катод-анод», что приводит к возникновению устойчивого дугового разряда. Электрическая дуга является концентрированным источником тепла с температурой до 6000 оС. Сварочные токи достигают 2-3 кА при напряжении дуги (10-50) В.
Наиболее часто применяется дуговая сварка покрытым электродом. Это ручная дуговая сварка электродом, покрытым соответствующим составом, имеющим следующее назначение:
1. Газовая и шлаковая защита расплава от окружающей атмосферы
Это используется в сварке с неплавящимся электродом:
В качестве электрода используется стержень из графита или вольфрама. Температура плавления данных материалов выше температуры, при которой протекает сварочный процесс. Сварка чаще всего проводится в среде защитного газа (аргон, гелий, азот и их смесях) для защиты шва и электрода от влияния атмосферы. Сварку может проводить как без присадочного материала, так и с ним. В качестве присадочного материала используются металлические прутки, проволока, полосы
2. Легирование материала шва необходимыми элементами
Это используется в сварке с плавящимся электродом:
В качестве электрода используется проволока (стальная, медная или алюминиевая), к которой через токопроводящий наконечник подводится ток. Электрическая дуга расплавляет проволоку, и для обеспечения её постоянной длины проволока подаётся автоматически механизмом подачи. Для защиты от атмосферы применяются защитные газы (аргон, гелий, углекислый газ и их смеси), подающиеся из сварочной головки вместе с электродной проволокой.
В состав покрытий входят вещества: шлакообразующие - для защиты расплава оболочкой (окислы, полевые шпаты, мрамор, мел); образующие газы СО2, СН4, ССl4; легирующие - для улучшения свойств шва (феррованадий, феррохром, ферротитан, алюминий и др.); раскислители - для устранения окислов железа (Ti, Mn, Al, Si и др.)
Пример реакции раскисления:
Fe2O3+Al = Al2O3+Fe.
Рис. Ручная сварка покрытым электродом: 1 - свариваемые детали, 2 - сварной шов, 3 - флюсовая корочка, 4 - газовая защита, 5 - электрод, 6 - покрытие электрода, 7 - сварная ванна
Рис. иллюстрирует сварку покрытым электродом. По указанной выше схеме между деталями (1) и электродом (6) зажигается сварочная дуга. Обмазка (5) при расплавлении защищает сварочный шов от окисления, улучшает его свойства путем легирования. Под действием температуры дуги электрод и материал заготовки плавятся, образуя сварную ванну (7), которая в дальнейшем кристаллизуется в сварной шов (2), сверху последний покрывается флюсовой корочкой (3), предназначенной для защиты шва.
Для получения качественного шва сварщик располагает электрод под углом (15-20)0 и перемещает его по мере расплавления вниз для сохранения постоянной длины дуги (3-5) мм и вдоль оси шва для заполнения разделки шва металлом. При этом обычно концом электрода совершают поперечные колебательные движения для получения валиков требуемой ширины.
Автоматическая сварка под флюсом.
Широко применяют автоматическую сварку плавящимся электродом под слоем флюса. Флюс насыпается на изделие слоем толщиной (50-60) мм, в результате чего дуга горит не в воздухе, а в газовом пузыре, находящемся под расплавленном при сварке флюсом и изолированным от непосредственного контакта с воздухом. Сама дуга при этом не видна. Этого достаточно для устранения разбрызгивания жидкого металла и нарушения формы шва даже при больших токах. При сварке под слоем флюса обычно применяют силу тока до (1000-1200) А, что при открытой дуге невозможно. Таким образом, пари сварке под слоем флюса можно повысить сварочный ток в 4-8 раз по сравнению со сваркой открытой дугой, сохранив при этом хорошее качество сварки при высокой производительности. При сварке под флюсом металл шва образуется за счет расплавления основного металла (около2/3) и лишь примерно 1/3 за счет электродного металла. Дуга под слоем флюса более устойчива, чем при открытой дуге. Сварка под слоем флюса производится голой электродной проволокой, которая с катушки подается в зону горения дуги сварочной головкой автомата, перемещаемой вдоль шва. Впереди головки по трубе в разделку шва поступает зернистый флюс, который, расплавляясь в процессе сварки, равномерно покрывает шов, образуя твердую корочку шлака.
Таким образом, автоматическая сварка под слоем флюса отличается от ручной сварки по следующим показателям: стабильное качество шва, производительность в (4-8) раз больше, чем при ручной сварке, толщина слоя флюса - (50-60) мм, сила тока - (1000-1200) А, оптимальная длина дуги поддерживается автоматически, шов состоит на 2/3 из основного металла и на 1/3 дуга горит в газовом пузыре, что обеспечивает отличное качество сварки. Благодаря этой технологии усиливается защита металла от вредного воздействия атмосферы и улучшается глубина проплавления металла.
Электрошлаковая сварка.
Электрошлаковая сварка является принципиально новым видом процесса соединения металлов, изобретенном и разработанным в ИЭС им. Патона. При электрошлаковой сварке в качестве электродов служат: электродная проволока, стержни, пластины. Свариваемые детали покрываются шлаком, нагреваемом до температуры, превышающей температуру плавления основного металла и электродной проволоки. Источником теплоты является расплавленный шлак, через который протекает электрический ток. При этом теплота, выделяемая флюсом, расплавляет кромки свариваемых деталей и присадочную проволоку. Способ находит своё применение при сварке вертикальных швов толстостенных изделий. Электрошлаковую сварку используют в машиностроении для изготовления ковано-сварных и лито-сварных конструкций.
На первой стадии процесс идет так же, как и при дуговой сварке под флюсом. После образования ванны из жидкого шлака горение дуги прекращается и оплавление кромок изделия происходит за счет тепла, выделяющегося при прохождении тока через расплав. Электрошлаковая сварка позволяет сваривать большие толщи металла за один проход, обеспечивает большую производительность, высокое качество шва.
Схема электрошлаковой сварки показана на рис.
Рис. Схема шлаковой сварки: 1 - свариваемые детали, 2 - сварной шов, 3 - расплавленный шлак, 4 - ползуны, 5 – электрод
Сварку ведут при вертикальном расположении деталей (1), кромки которых так же вертикальны или имеют наклон не более 30 o к вертикали. Между свариваемыми деталями устанавливают небольшой зазор, куда насыпают порошок шлака. В начальный момент зажигается дуга между электродом (5) и металлической планкой, устанавливаемой снизу. Дуга расплавляет флюс, который заполняет пространство между кромками свариваемых деталей и медными формующими ползунами (4), охлаждаемыми водой. Таким образом, из расплавленного флюса возникает шлаковая ванна (3), после чего дуга шунтируется расплавленным шлаком и гаснет. В этот момент электродуговая плавка переходит в электрошлаковый процесс. При прохождении тока через расплавленный шлак выделяется джоулево тепло. Шлаковая ванна нагревается до температур (1600-1700) 0С, превышающих температуру плавления основного и электродного металлов. Шлак расплавляет кромки свариваемых деталей и погруженный в шлаковую ванну электрод. Расплавленный металл стекает на дно шлаковой ванны, где и образует сварочную ванну. Шлаковая ванна надежно защищает сварочную ванну от окружающей атмосферы. После удаления источника тепла, металл сварочной ванны кристаллизуется. Сформированный шов покрыт шлаковой коркой, толщина которой достигает 2 мм. Повышению качества шва при электрошлаковой сварке способствует ряд процессов.
В заключение отмечу основные преимущества электрошлаковой сварки:
- Газовые пузыри, шлак и легкие примеси удаляются из зоны сварки по причине вертикального расположения сварного устройства.
- Большая плотность сварного шва.
- Сварной шов менее подвержен трещинообразованию.
- Производительность электрошлаковой сварки при больших толщинах материалов почти в 20 раз превышает аналогичный показатель автоматической сварки под флюсом.
- Можно получать швы сложной конфигурации.
- Этот вид сварки наиболее эффективен при соединении крупногабаритных деталей типа корпусов кораблей, мостов, прокатных станов и пр.
Электронно-лучевая сварка.
Источником тепла является мощный пучок электронов с энергией в десятки килоэлектронвольт. Луч получается за счёт термоэлектронной эмиссии с катода электронно-лучевой пушки. Быстрые электроны, внедряясь в заготовку, передают свою энергию электронам и атомам вещества, вызывая интенсивный разогрев свариваемого материала до температуры плавления. Процесс сварки осуществляется в вакууме, что обеспечивает высокое качество шва. Ввиду того что электронный луч можно сфокусировать до очень малых размеров (менее микрона в диаметре), данная технология является монопольной при сварке микродеталей. Известна также технология сварки электронным лучом в атмосфере нормального давления, когда электронный луч покидает область вакуума непосредственно перед свариваемыми деталями.
Плазменная сварка.
При плазменной сварке источником энергии для нагрева материала служит плазма - ионизованный газ, получаемая при нагреве электрическим током электрода. Наличие электрически заряженных частиц делает плазму чувствительной к воздействию электрических полей. В электрическом поле струя плазмы сжимается и ускоряется, за счет ускорения электронов и ионов, то есть увеличивают свою энергию, а это эквивалентно нагреванию плазмы вплоть до 20-30 тыс. градусов. Струя плазмы оказывает на свариваемое изделие как тепловое, так и газодинамическое воздействие. Теплом струи расплавляется основной металл около дуги, а также присадочный металл. Помимо сварки этот способ часто используется для наплавки, напыления и резки.
Для сварки используются дуговые и высокочастотные плазмотроны. Для сварки металлов, как правило, используют плазмотроны прямого действия, а для сварки диэлектриков и полупроводников применяются плазмотроны косвенного действия. Высокочастотные плазмотроны так же применяются для сварки. В камере плазмотрона газ разогревается вихревыми токами, создаваемыми высокочастотными токами индуктора. Здесь нет электродов, поэтому плазма отличается высокой чистотой. Факел такой плазмы может эффективно использоваться в сварочном производстве.
Лазерная сварка.
Источником теплоты служит сфокусированный лазерный луч. Применяют твердотельные, газовые, жидкостные и полупроводниковые лазерные установки. Лазерный луч также используется для резки различных материалов. Основными достоинствами лазерной сварки являются: возможность вести процесс на больших скоростях, практически отсутствие деформаций изделия и узкий шов.
Газопламенная сварка.
Источником теплоты является газовый факел, образующийся при сгорании смеси кислорода и горючего газа. В качестве горючего газа могут быть использованы ацетилен, водород, пропан, бутан и их смеси. Тепло, выделяющееся при горении смеси кислорода и горючего газа, оплавляет свариваемые поверхности и присадочный материал с образованием сварочной ванны. Пламя, полученное при выходе из газовой горелки, создает температуру до 3000°С и позволяет не только проводить сварку металлических кромок отдельных деталей, но и резать металл, нагревать его для гибки и т.д. Так же это пламя может быть «окислительным» или «восстановительным», это регулируется количеством кислорода.
Индукционная сварка.
При этом способе металл нагревается пропусканием через него токов высокой частоты и сдавливается. Индукционная сварка удобна тем, что она бесконтактна, токи высокой частоты локализуются вблизи поверхности нагреваемых заготовок.
Подобные установки работают следующим образом:
Ток высокочастотного генератора подводится к индуктору, который индуцирует вихревые токи в заготовке, и труба разогревается. Питание током производится от ламповых генераторов мощностью до 260 кВт при частоте 440 кГц и 880 кГц.
Этим способом преимущественно сваривают продольные швы труб в процессе их изготовления на непрерывных станах и наплавляют твердые сплавы на стальные основания при изготовлении резцов, буровых долот и другого инструмента.
2.2. Термомеханический класс сварки
Диффузионная сварка.
Способ основан на взаимной диффузии атомов в поверхностных слоях контактирующих материалов при высоком вакууме. Соединяемые поверхности сдавливают и нагревают. Высокая диффузионная способность атомов обеспечивается нагревом материала до температуры, близкой к температуре плавления. Отсутствие воздуха в камере предотвращает образование оксидной пленки, которая смогла бы препятствовать диффузии. Надежный контакт между свариваемыми поверхностями обеспечивается механической обработкой до высокого класса чистоты. Сжимающее усилие, необходимое для увеличения площади действительного контакта, составляет (10-20) МПа.
Технология диффузионной сварки состоит в следующем:
Свариваемые заготовки помещают в вакуумную камеру и сдавливают небольшим усилием. Затем заготовки нагревают током и выдерживают некоторое время при заданной температуре. Диффузионную сварку применяют для соединения плохо совместимых материалов: сталь с чугуном, титаном, вольфрамом, керамикой и др.
Данная технология весьма дорогостоящая и поэтому находит свое применение в основном в авиакосмической, электронной и инструментальной промышленности.
Контактная электрическая сварка.
При электрической контактной сварке, или сварке сопротивлением, нагрев осуществляется пропусканием электрического тока достаточной иглы через место сварки. Детали, нагретые электрическим током до плавления или пластического состояния, механически сдавливают или осаживают, что обеспечивает химическое взаимодействие атомов металла. Таким образом, контактная сварка относится к группе сварки давлением.
Контактная сварка является одним из высокопроизводительных способов сварки, она легко поддается автоматизации и механизации, вследствие чего широко применяется в машиностроении и строительстве.
По форме выполняемых соединений различают три вида контактной сварки: стыковую, роликовую (шовную) и точечную.
Стыковая контактная сварка.
Это вид контактной сварки, при которой соединение свариваемых частей происходит по поверхности стыкуемых торцов. Детали зажимают в электродах-губках, затем прижимают друг к другу соединяемыми поверхностями и пропускают сварочный ток. Стыковой сваркой соединяют проволоку, стержни, трубы, полосы, рельсы, цепи и др. детали по всей площади их торцов.
Существует два способа стыковой сварки:
- Сопротивлением: в стыке происходит пластическая деформация и соединение образуется без расплавления металла (температура стыков 0,8-0,9 от температуры плавления).
- Оплавлением: детали соприкасаются в начале по отдельным небольшим контактным точкам, через которые проходит ток высокой плотности, вызывающий оплавление деталей. В результате оплавления на торце образуется слой жидкого металла, который при осадке вместе с загрязнениями и окисными плёнками выдавливается из стыка.
Температура нагрева и сжимающее давление при стыковой сварке взаимосвязаны. Как следует из Рис. 5, усилие F значительно уменьшается с ростом температуры нагрева заготовок при сварке.
Шовная контактная сварка.
Разновидность контактной сварки, при которой соединение элементов выполняется внахлёстку вращающимися дисковыми электродами в виде непрерывного или прерывистого шва. При шовной сварке образование непрерывного соединения (шва) происходит последовательным перекрытием точек друг за другом, для получения герметичного шва точки перекрывают друг друга не менее чем на половину их диаметра.
На практике применяется шовная сварка:
- непрерывная
- прерывистая с непрерывным вращением роликов
- прерывистая с периодическим вращением
Рис. Зависимость температуры стыковой сварки от давления сжатия
Шовная сварка применяется в массовом производстве при изготовлении различных сосудов. Осуществляется на переменном токе силой (2000-5000) А. Диаметр роликов равен (40-350) мм, усилие сжатия свариваемых деталей достигает 0,6 т, скорость сварки составляет (0,53,5) м/мин.
Точечная контактная сварка.
При точечной сварке соединяемые детали обычно располагаются между двумя электродами. Под действием нажимного механизма электроды плотно сжимают свариваемые детали, после чего включается ток. За счёт прохождения тока свариваемые детали быстро нагреваются до температуры сварки. Диаметр расплавленного ядра определяет диаметр сварной точки, обычно равный диаметру контактной поверхности электрода.
В зависимости от расположения электродов по отношению к свариваемым деталям точечная сварка может быть двусторонней и односторонней.
При точечной сварке деталей разной толщины образующееся несимметричное ядро смещается в сторону более толстой детали и при большом различии в толщине не захватывает тонкой детали. Поэтому применяют различные технологические приёмы, обеспечивающие смещение ядра к стыкуемым поверхностям, усиливают нагрев тонкого листа за счёт накладок, создают рельеф на тонком листе, применяют более массивные электроды со стороны толстой детали и др.
Разновидностью точечной сварки является рельефная сварка, когда первоначальный контакт деталей происходит по заранее подготовленным выступам (рельефам). Ток, проходя через место касания всех рельефов с нижней деталью, нагревает их и частично расплавляет. Под давлением рельефы деформируются, и верхняя деталь становится плоской. Этот способ применяют для сварки деталей небольших размеров.
Точечная конденсаторная сварка.
Одним из распространенных видов контактной сварки является конденсаторная сварка или сварка запасённой энергией, накопленной в электрических конденсаторах. Энергия в конденсаторах накапливается при их зарядке от источника постоянного напряжения (генератора или выпрямителя), а затем в процессе разрядки преобразуется в теплоту, используемую для сварки. Накопленную в конденсаторах энергию можно регулировать изменением ёмкости конденсатора (С) и напряжения зарядки (U).
Существует два вида конденсаторной сварки:
- бестрансформаторная (конденсаторы разряжаются непосредственно на свариваемые детали);
- трансформаторная (конденсатор разряжается на первичную обмотку сварочного трансформатора, во вторичной цепи которого находятся предварительно сжатые свариваемые детали).
Принципиальная схема конденсаторной сварки приведена на рис.
Рис. Принципиальная схема устройства для конденсаторной сварки: Тр повышающий трансформатор, В – выпрямитель, С – конденсатор емкостью 500 мкФ, Rк – сопротивление свариваемых деталей, К – ключ- переключатель
В положении переключателя 1 конденсатор заряжается до напряжения U0. При переводе переключателя в поз. 2 конденсатор разряжается через контактное сопротивление свариваемых деталей. При этом возникает мощный импульс тока.
Напряжение с конденсатора подается на заготовку через точечные контакты площадью
2 мм. Возникающий при этом импульс тока в соответствии с законом Джоуля-Ленца разогревает область контакта до рабочей температуры сварки. Для обеспечения надежного прижимания свариваемых поверхностей через точечные электроды на детали передается механическое напряжение порядка 100 МПа.
Введение 2
1. Классификация сварки металловлюс газовшлаковый 4
1.2. Термический класс сварки. 8
2.2. Термомеханический класс сварки 18
2.3. Механический класс сварки 25
Сварка трением. 26
Сварка взрывом. 27
Ультразвуковая сварка. 27
3.ТБ и ПБ при сварочно-монтажных работах. 27
ЗАКЛЮЧЕНИЕ 29
4. ПРактическая часть 31
Список литературы 32
Для определения эффективности сварки оценим максимальную температуру в области контакта свариваемых деталей (Тmax).
Ввиду того что длительность импульса разрядного тока не превышает 10-6 с, расчет проведен в адиабатическом приближении, то есть пренебрегая теплоотводом из области протекания тока.
Принцип контактного нагрева деталей представлен на рис.
Рис. Принцип контактной сварки: 1 – свариваемые детали толщиной d = 5*10-2 см, 2 – электроды площадью S= 3*10-2 см , С – конденсатор емкостью 500 мкФ, Rк – контактное сопротивление
Преимуществом конденсаторной сварки:
Незначительная потребляемая мощность, которая составляет (0,1-0,2) кВА. Продолжительность импульса сварочного тока – тысячные доли секунды. Диапазон свариваемых толщин металла находится в пределах от 0,005 мм до 1 мм.
Основное применение конденсаторной сварки:
Конденсаторная сварка позволяет успешно соединять металлы малых толщин, мелкие детали и микродетали, плохо различимые невооруженным глазом и требующие при сборке применения оптических приборов. Этот прогрессивный способ сварки нашел применение в производстве электроизмерительных приборов и авиационных приборов, часовых механизмов, фотоаппаратов и т.д.
2.3. Механический класс сварки
Холодная сварка.
Соединение заготовок при холодной сварке осуществляется путем пластического деформирования при комнатной, реже при отрицательных температурах. Образование неразъемного соединения происходит в результате возникновения металлической связи при сближении соприкасающихся поверхностей до расстояния, при котором возможно действие межатомных сил, причем в результате большого усилия сжатия пленка окислов разрывается и образуются чистые поверхности металлов.
Свариваемые поверхности должны быть тщательно очищены от адсорбированных примесей и жировых пленок. Холодной сваркой могут быть выполнены точечные, шовные и стыковые соединения.
На рис. представлен процесс холодной точечной сварки.
Рис. Схема холодной сварки
Листы металла (1) с тщательно зачищенной поверхностью в месте сварки помещают между пуансонами (2), имеющими выступы (3). Пуансона сжимают с некоторым усилием Р, выступы (3) вдавливаются в металл на всю их высоту
, пока опорные поверхности (4) пуансонов не упрутся в наружную поверхность свариваемых заготовок.
Применение холодной сварки:
Холодной сваркой выполняют соединения проволок, шин, труб внахлест и встык. Давление выбирают в зависимости от состава и толщины свариваемого материала, в среднем оно составляет (1-3) ГПа.
Сварка трением.
При сварке трением нагрев свариваемых деталей получают за счет сил трения, возникающих при вращении деталей относительно друг друга при одновременном сдавливании их между собой.
Сварка взрывом.
Сближение атомов между собой может происходить в результате направленного взрыва, при котором частицы быстро движутся навстречу друг другу и, соударяясь, сближаются между собой настолько, что между ними возникают силы взаимодействия.
Данный метод применяется для плакирования металлов инородным материалом. Например, сталь плакируется алюминием.
Ультразвуковая сварка.
Силы взаимодействия между атомами при ультразвуковой сварке возникают в результате колебаний кристаллической решетки металла под действием ультразвуковых колебаний.
3.ТБ и ПБ при сварочно-монтажных работах.
Сварка является одним из ведущих технологических процессов изготовление и ремонта многообразных металлических конструкций в различных отраслях промышленности, строительства и транспорта. По сравнению с другими методами их изготовления (литые, кованные, клепанные и т.п.) сварные конструкции оказываются более лёгким и менее трудоёмкими. При этом экономия металла составляет от 10 до 50%.
Электросварочные работы относятся к работам с повышенной степенью опасности. Это объясняется тем, что сварка электрической дугой сопровождается выделением большого количества пыли, газов, тепла, а также излучением видимых и невидимых инфракрасных и ультрафиолетовых лучей. Химический состав выделяющихся газов и пыли в основном зависит от химического состава свариваемых металлов, стержня электрода и его покрытия. Наиболее вредными веществами, входящими в состав свариваемого металла, присадочного материала и стержня электрода являются хром, марганец, цинк, титан и др. Систематическое и длительное пребывание в загрязненной атмосфере отрицательно сказывается на состоянии здоровья работающих.
В работе сварщиков несчастные случаи связаны также с засорением и ранением глаз, ожогами тела, ушибами рук и ног, с поражением электрическим током.
Особенно опасно поражение электрическим током при удалении огарков, случайном включении корпуса аппарата в сеть, неисправном сварочном аппарате или сети заземления, непроизвольном подключении аппарата и т.п.
У электросварщиков, работающих в условиях, не отвечающих требованиям техники безопасности и производственной санитарии, могут возникать острые и хронические отравления: пневмокониоз, поражения слизистых оболочек глаз лучистой электроэнергией сварочной дуги и невидимыми ультрафиолетовыми лучами; перегревание организма - тепловые удары, ушибы, ранения и ожоги, а также возникает опасность поражения электрическим током.
Основными организационными мерами, обеспечивающими безопасное выполнение электросварочных работ, являются исключение травмоопасных условий производственной среды путем создания и внедрения наиболее рационального технологического процесса с использованием современного и безопасного сварочного оборудования, а также повышение уровня профессионального мастерства, знаний, навыков безопасного выполнения сварочных работ, сознательности и дисциплины сварщиков и их подручных.
1. Организация рабочего места (поста) электросварщика и наличие средств коллективной и индивидуальной защиты
ЗАКЛЮЧЕНИЕ
Сварка обладает значительным преимуществом по сравнению с ранее применявшимся в строительстве соединением частей конструкций при помощи клепки: уменьшается расход металла, повышается производительность труда, сокращаются сроки строительства и его стоимость.
Рассмотрена классификация способов сварки по физическим признакам. Основным физическим признаком сварки является вид энергии, используемой для получения сварного соединения. По физическим признакам все виды сварки делятся на три класса: термический, термомеханический и механический. Самым распространенным способом сварки плавлением является электрическая дуговая сварка. Она широко применяется в производстве металлоконструкций и изделий из различных металлов и сплавов малой и средней толщины, удобна при выполнении коротких и криволинейных швов в любых пространственных положениях, а также при наложении швов в труднодоступных местах. Ручная сварка остается незаменимой при монтажных и ремонтных работах в стационарных и полевых условиях, и при сборке конструкций сложной формы. Наиболее распространенным способом сварки давлением является контактная сварка. Контактная сварка находит широкое применение в промышленности, что обусловлено следующими её преимуществами: высокой производительностью; возможностью механизации процесса; возможностью соединения различных металлов и сплавов, а также разнородных металлов; минимальной деформацией свариваемых изделий.
Однако, наиболее перспективной с точки зрения качества сварного шва, экономичности, безопасности работы, сферы применения и условий эксплуатации, возможности автоматизации и набора материалов, которые можно сваривать, наиболее перспективна лазерная сварка. Причем число видов свариваемых металлов очень велико.
Процесс сварки легко поддается автоматизации, участие человека непосредственно в процессе сведено к минимуму, а значит влияние человеческого факта на качество изделия очень невелико.
4. ПРактическая часть
Список литературы
1. Сычев, М.М. [Текст] Материаловедение. Технология конструкционных материалов: учебное пособие / М.М. Сычев, С.И. Гринева, В.Н. Коробко, Т.В. Лукашова, С.В. Мякин, В.В. Бахметьев. - СПб.: СПбГТИ(ТУ), 2008.
2. Мутылина, И.Н. [Текст] Технология конструкционных материалов: учебное пособие / И.Н. Мутылина. - Владивосток: Изд-во ДВГТУ, 2007.
3. Быков, В.П. [Текст] Ручная дуговая сварка: методические указания / В.П. Быков, Б.Ф. Орлов, А.С. Поздеев. - Архангельск: РИО АГТУ, 1997.
4. Быков, В.П. [Текст] Контактная сварка: методические указания / В.П. Быков, А.С. Поздеев. - Архангельск: РИО АГТУ, 1997.
5. Ю.В. Казаков «Сварка и резка материалов» М. 2003.
Размещено на Allbest.ur