Файл: Гидравлика составитель доцент кафедры гигэ игнд тпу крамаренко В. В.ppt
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 09.11.2023
Просмотров: 53
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
СОДЕРЖАНИЕ
Типы задач при расчете трубопроводов
Частные случаи расчета трубопроводов
Расчет последовательно соединенных трубопроводов
Расчет параллельно соединенных трубопроводов
Расчет трубопроводов при непрерывном изменении расхода по пути
Расчет разветвленного трубопровода
Расчет кольцевого трубопровода
Pасчет всасывающего трубопровода насоса
Изменение пропускной способности трубопроводов в процессе их эксплуатации
Н при заданных расходах в точках отбора Q2 и Q3, расположении трубопровода, длинах отдельных участков и диаметрах всех труб.
Решение этой задачи затруднено тем, что неизвестны ни расход, ни направление потока на замыкающем участке кольца между точками С и D. Если, например, течение происходит от точки С к точке D, то расход на участке 2 Q=Q2+Q3, а если течение происходит от точки D к точке С, то Q1=Q2–Q3.
В связи с этим при гидравлическом расчете кольцевой сети прежде всего намечают точку схода. Точкой схода называется узел кольцевой сети, к которому жидкость притекает с двух сторон. Эта точка характерна тем, что потери напора от магистральной узловой точки В до нее одинаковы по обоим полукольцам.
Пусть точкой схода будет точка D, тогда, мысленно размыкая кольцо в этой точке, получим трубопровод, имеющий простое разветвление в точке В, гидравлический расчет которого изложен выше.
Составим уравнение Бернулли для сечений 1–1 и 2–2, взяв за плоскость отсчета плоскость 0–0, совпадающую с 2–2:
H+pат/g+ v12/(2g)= 0+ pат/g + v22/(2g)+hw.
Пренебрегая скоростными напорами в резервуарах, получаем
H= hw= v2/2g*(1+ λ*l /d+ )
где v – скорость движения воды в сифоне; Σ λ – сумма коэффициентов сопротивлений по длине на восходящем, на горизонтальном и на нисходящем участках. Если диаметр на всех участках сифонной трубы один и тот же, то
Однако при расчете сифона надо дополнительно убедиться возникнет ли в трубе чрезмерный вакуум, так как глубокий вакуум· может вызвать вскипание жидкости, что нарушит работу сифона.·Составим уравнение Бернулли для сечений 1–1 и x-x относительно плоскости 0–0
H+pат/g + v12/(2g)= Н +z+px/g + v22/(2g)+hw .
Полагая v1=0, перепишем уравнение
(pат –px)/g = z +v2/(2g) +( λl/d+)*v2/(2g).
Величина в левой части уравнения представляет собой вакуум
hвак= (pат –px)/g, и
hвак= z +(1+ λl/d+)*v2/(2g),
где v – скорость движения воды в сифоне; z – высота в сечении
х–х над уровнем воды в резервуаре, l – части сифонной трубы от начала до сечения x–x сечения, - сумма коэффициентов местных сопротивлений от начала трубы до сечения x–x. В нашем случае
=вх+пов.
Из уравнения следует, что hвак будет тем больше, чем больше z, скорость v и потери напора.
Pасчет всасывающего трубопровода насоса – участка трубопровода от места водозабора до насоса, ведется аналогично расчету сифона. Определяется вакуум во всасывающем трубопроводе перед входом в насос, для этого составляется уравнение Бернулли для сечений 1-1 и 2-2, принимая плоскость сравнения 0-0 на уровне жидкости в резервуаре:
pат/g = z + p2/g + v2/(2g) +( λl/d+)*v2/(2g),
где z – высота установки насоса, называемая геометрической высотой всасывания.
Это уравнение показывает, что процесс всасывания, т.е. подъем жидкости на высоту z, сообщение ей скорости и преодоление всех гидравлических сопротивлений, происходит в результате использования, (с помощью насоса) атмосферного давления. Из формулы можно получить выражение для вакуумметрической высоты всасывания:
hвак= (pат –p2)/g= z + v2/(2g) +( λl/d+)*v2/(2g).
Из этой формулы видно, что для уменьшения вакуума на входе в насос необходимо уменьшать высоту установки насоса, скорость движения жидкости и гидравлические сопротивления.
При проектировании напорных трубопроводов следует учитывать, что их пропускная способность в период эксплуатации снижается – в некоторых случаях (например, для трубопроводов водоснабжения) до 50% расчетной и даже ниже. Вследствие коррозии и инкрустации (образование отложений в трубах) шероховатость труб увеличивается, что в первом приближении можно оценить по формуле
= 0 + t,
где – шероховатость, мм, для новых труб (в начале эксплуатации); – абсолютная шероховатость, мм, через t лет эксплуатации; – коэффициент, характеризующий быстроту возрастания шероховатости, мм/год.
Значение коэффициента α зависит от материала труб и свойств жидкости. В табл. приведены значения α (по А.Д. Альштулю и А.Г. Камерштейну) в зависимости от физико-химических свойств транспортируемой воды.
Изменение давления в водоводах, вызванное резким увеличением или уменьшением скорости движения жидкости, называется гидравлическим ударом. Гидравлический удар в 1898 г. подробно описал выдающийся русский ученый Η. Ε. Жуковский.
Ударное давление Δρ определяется разностью давлений при неустановившемся и установившемся режимах. Если давление Δρ>0 то удар называется положительным, при Δρ<0 то отрицательным.
Различают четыре этапа развития гидравлического удара. Первый этап. Допустим, что задвижка 3 мгновенно закрылась и слой жидкости, находящийся у задвижки остановился, а вся жидкость в трубе 2 продолжает двигаться с прежней скоростью v. Через некоторое время начнут останавливаться и другие слои жидкости слева от задвижки, т.е. фронт остановившейся жидкости будет перемещаться от задвижки к резервуару 1. Обозначим этот фронт сечением n–n. В остановившемся объеме между задвижкой сечением возникает дополнительное давление Δρ. Итак, слева от сечения n–n жидкость движется вправо со скоростью v и в трубе будет прежнее давление р; справа от сечения n–n; жидкость неподвижна и давление равно
p+Δp. Фронт сжатия быстро перемещается в сторону резервуара. Скорость перемещения этого фронта называется скоростью распространение ударной волны c. Описанныйпроцесс будет продолжаться до тех пор, пока волна не дойдет до резервуара. Этим заканчивается первый этап гидравлического удара, в конце этого этапа вся жидкость в трубе неподвижна, сжата и находится под давлением p+Δp. Некоторый дополнительный объем жидкости из резервуара поступит в трубу.
Различают четыре этапа развития гидравлического удара. Первый этап. Допустим, что задвижка 3 мгновенно закрылась и слой жидкости, находящийся у задвижки остановился, а вся жидкость в трубе 2 продолжает двигаться с прежней скоростью v. Через некоторое время начнут останавливаться и другие слои жидкости слева от задвижки, т.е. фронт остановившейся жидкости будет перемещаться от задвижки к резервуару 1. Обозначим этот фронт сечением n–n. В остановившемся объеме между задвижкой сечением возникает дополнительное давление Δρ. Итак, слева от сечения n–n жидкость движется вправо со скоростью v и в трубе будет прежнее давление р; справа от сечения n–n; жидкость неподвижна и давление равно p+Δp. Фронт сжатия быстро перемещается в сторону резервуара. Скорость перемещения этого фронта называется скоростью распространение ударной волны c. Описанныйпроцесс будет продолжаться до тех пор, пока волна не дойдет до резервуара. Этим заканчивается первый этап гидравлического удара, в конце этого этапа вся жидкость в трубе неподвижна, сжата и находится под давлением p+Δp. Некоторый дополнительный объем жидкости из резервуара поступит в трубу.
Второй этап. Начало второго этапа совпадает с окончанием первого. Сжатая жидкость расширяясь, начнет двигаться в сторону резервуара. Сначала придут в движение слои жидкости вблизи резервуара, а затем и болееотдаленные, т.е. фронт спада давления n–n начнет повышаться от резервуара к задвижке. К концу фазы вся жидкость в трубе движется со скоростью υ в сторону резервуара давление в трубе восстанавливается до первоначального.
Третий этап. Начало третьего этапа характеризуется тем, что жидкость в трубе движется в сторону резервуара со скоростью v. У задвижки возникает слой жидкости, в котором давление на Δр меньше первоначальною. Теперь фронт n-n пониженного давления перемешается в сторону резервуара слева от него давление р, скорость направлена влево, справа жидкость неподвижна, давление в ней на
Δρ ниже нормального, Третий этап заканчивается приходом фронта n–n к резервуару.
Четвертый этап. Начало четвертого этапа характеризуется тем, что давление у входа в трубу со стороны резервуара р, а со стороны трубы меньше на Δp, т.е. р–Δp . Такое неуравновешенное состояние приведет к тому, что жидкость из резервуара начнет втекать в трубу со скоростью v и в ней будет повышаться до р.
Рассмотрим слой жидкости от задвижки до сечения n-n длиной Δl и площадью поперечного сечения w. Остановившаяся масса жидкости (m) в этом объеме потеряла количество движения за время Δt, в течение которого фронт повышенного давления передвинулся от задвижки влево на расстояние Δl:
mv=w Δlv.
Импульс силы за тот же промежуток времени равен ΔpwΔt.
Справа от сечения n–nдавление p + Δp. слева от него – р.
Произведение Δρw есть сила, остановившая объем жидкости w Δl за время Δt. Приравняв импульс силы к количеству движения получим
ΔpwΔt=w Δlv.
Откуда
Δp= Δlv/Δt,
где v скорость в трубопроводе до закрытия задвижки и поскольку Δl/Δt – скорость распространения ударной волны c, запишем
Δp= сv.
Эта формула была впервые получена Η.Е. Жуковским.
В реальных условиях процесс гидравлического удара протекает несколько иначе, так как при 6ольших давлениях, сопровождающих гидравлический удар, сказывайся как сжимаемость жидкости, так и упругость стенок водовода. Для случая упругих стенок Η.Ε. Жуковским была получена также формула для определения скорости ударной волны.
c=
где – плотность жидкости; d – внутренний диаметр трубы, d – толщина стенок трубы; Eж – модуль упругости жидкости (кг/м2), Етр – модуль упругости материала стенок трубы.
Если труба абсолютно жесткая Етр∞, то с0=Eж/r, тогда скорость распространения ударной волны с0 при абсолютно жестких стенках трубопровода равна скорости распространения звука в воде (с0=1425 м/с) и для воды:
с=1425/
Формула справедлива для так называемого прямого удара, т.е. когда время закрытия задвижки меньше фазы удара tз (T=2L/c, где L – длина трубопровода от места его перекрытия до сечения в котором давление считается постоянным).
Если tз>T удар называют непрямым, и ударное повышение давления Δp будет меньше определяемого по формуле. При таких условиях повышение давления можно найти по формуле Мишо
Δp= сv(T/tз)=
При условии, что tз=T результаты расчетов по этим формулам одинаковы.
Решение этой задачи затруднено тем, что неизвестны ни расход, ни направление потока на замыкающем участке кольца между точками С и D. Если, например, течение происходит от точки С к точке D, то расход на участке 2 Q=Q2+Q3, а если течение происходит от точки D к точке С, то Q1=Q2–Q3.
В связи с этим при гидравлическом расчете кольцевой сети прежде всего намечают точку схода. Точкой схода называется узел кольцевой сети, к которому жидкость притекает с двух сторон. Эта точка характерна тем, что потери напора от магистральной узловой точки В до нее одинаковы по обоим полукольцам.
Пусть точкой схода будет точка D, тогда, мысленно размыкая кольцо в этой точке, получим трубопровод, имеющий простое разветвление в точке В, гидравлический расчет которого изложен выше.
Расчет сифона
Составим уравнение Бернулли для сечений 1–1 и 2–2, взяв за плоскость отсчета плоскость 0–0, совпадающую с 2–2:
H+pат/g+ v12/(2g)= 0+ pат/g + v22/(2g)+hw.
Пренебрегая скоростными напорами в резервуарах, получаем
H= hw= v2/2g*(1+ λ*l /d+ )
где v – скорость движения воды в сифоне; Σ λ – сумма коэффициентов сопротивлений по длине на восходящем, на горизонтальном и на нисходящем участках. Если диаметр на всех участках сифонной трубы один и тот же, то
- λ *l /d = λl/d,
где l – длина сифонной трубы. Тогда получим уравнение
H= v2/2g*(1+ λl/d+ ),
где – сумма коэффициентов местных сопротивлений
=вх+вых+2пов.
Полученное уравнение может быть решено относительно любого из трех неизвестных: Н, v (Q), d, т. е. сифонный трубопровод может быть рассчитан в любой постановке задачи.
Однако при расчете сифона надо дополнительно убедиться возникнет ли в трубе чрезмерный вакуум, так как глубокий вакуум· может вызвать вскипание жидкости, что нарушит работу сифона.·Составим уравнение Бернулли для сечений 1–1 и x-x относительно плоскости 0–0
H+pат/g + v12/(2g)= Н +z+px/g + v22/(2g)+hw .
Полагая v1=0, перепишем уравнение
(pат –px)/g = z +v2/(2g) +( λl/d+)*v2/(2g).
Величина в левой части уравнения представляет собой вакуум
hвак= (pат –px)/g, и
hвак= z +(1+ λl/d+)*v2/(2g),
где v – скорость движения воды в сифоне; z – высота в сечении
х–х над уровнем воды в резервуаре, l – части сифонной трубы от начала до сечения x–x сечения, - сумма коэффициентов местных сопротивлений от начала трубы до сечения x–x. В нашем случае
=вх+пов.
Из уравнения следует, что hвак будет тем больше, чем больше z, скорость v и потери напора.
Pасчет всасывающего трубопровода насоса
Pасчет всасывающего трубопровода насоса – участка трубопровода от места водозабора до насоса, ведется аналогично расчету сифона. Определяется вакуум во всасывающем трубопроводе перед входом в насос, для этого составляется уравнение Бернулли для сечений 1-1 и 2-2, принимая плоскость сравнения 0-0 на уровне жидкости в резервуаре:
pат/g = z + p2/g + v2/(2g) +( λl/d+)*v2/(2g),
где z – высота установки насоса, называемая геометрической высотой всасывания.
Это уравнение показывает, что процесс всасывания, т.е. подъем жидкости на высоту z, сообщение ей скорости и преодоление всех гидравлических сопротивлений, происходит в результате использования, (с помощью насоса) атмосферного давления. Из формулы можно получить выражение для вакуумметрической высоты всасывания:
hвак= (pат –p2)/g= z + v2/(2g) +( λl/d+)*v2/(2g).
Из этой формулы видно, что для уменьшения вакуума на входе в насос необходимо уменьшать высоту установки насоса, скорость движения жидкости и гидравлические сопротивления.
Изменение пропускной способности трубопроводов в процессе их эксплуатации
При проектировании напорных трубопроводов следует учитывать, что их пропускная способность в период эксплуатации снижается – в некоторых случаях (например, для трубопроводов водоснабжения) до 50% расчетной и даже ниже. Вследствие коррозии и инкрустации (образование отложений в трубах) шероховатость труб увеличивается, что в первом приближении можно оценить по формуле
= 0 + t,
где – шероховатость, мм, для новых труб (в начале эксплуатации); – абсолютная шероховатость, мм, через t лет эксплуатации; – коэффициент, характеризующий быстроту возрастания шероховатости, мм/год.
Значение коэффициента α зависит от материала труб и свойств жидкости. В табл. приведены значения α (по А.Д. Альштулю и А.Г. Камерштейну) в зависимости от физико-химических свойств транспортируемой воды.
Коррозионное воздействие | Характеристика природных вод | α , мм/год |
Слабое | Слабоминерализованные воды, воды с незначительным содержанием органических веществ и растворенного железа | 0,005-0,055 |
Умеренное | Слабоминерализованные воды, воды содержащие органические вещества и растворенное железо в количестве меньше 3 мг/л | 0,055-0,18 |
Значительное | Воды с держанием железа более 30 мг/л, но с малым содержанием хлоридов и сульфатов | 0,18-0,40 |
Сильное | Коррозионные воды с большим содержанием хлоридов и сульфатов (больше 500-700 мг/л), необработанные воды с большим содержанием органических веществ | 0,40-0,60 |
Очень сильное | Воды со значительной карбонатной и малой постоянной жесткостью, сильно минерализованные | 0,6-0,1 и более |
Гидравлический удар
Изменение давления в водоводах, вызванное резким увеличением или уменьшением скорости движения жидкости, называется гидравлическим ударом. Гидравлический удар в 1898 г. подробно описал выдающийся русский ученый Η. Ε. Жуковский.
Ударное давление Δρ определяется разностью давлений при неустановившемся и установившемся режимах. Если давление Δρ>0 то удар называется положительным, при Δρ<0 то отрицательным.
Различают четыре этапа развития гидравлического удара. Первый этап. Допустим, что задвижка 3 мгновенно закрылась и слой жидкости, находящийся у задвижки остановился, а вся жидкость в трубе 2 продолжает двигаться с прежней скоростью v. Через некоторое время начнут останавливаться и другие слои жидкости слева от задвижки, т.е. фронт остановившейся жидкости будет перемещаться от задвижки к резервуару 1. Обозначим этот фронт сечением n–n. В остановившемся объеме между задвижкой сечением возникает дополнительное давление Δρ. Итак, слева от сечения n–n жидкость движется вправо со скоростью v и в трубе будет прежнее давление р; справа от сечения n–n; жидкость неподвижна и давление равно
p+Δp. Фронт сжатия быстро перемещается в сторону резервуара. Скорость перемещения этого фронта называется скоростью распространение ударной волны c. Описанныйпроцесс будет продолжаться до тех пор, пока волна не дойдет до резервуара. Этим заканчивается первый этап гидравлического удара, в конце этого этапа вся жидкость в трубе неподвижна, сжата и находится под давлением p+Δp. Некоторый дополнительный объем жидкости из резервуара поступит в трубу.
Различают четыре этапа развития гидравлического удара. Первый этап. Допустим, что задвижка 3 мгновенно закрылась и слой жидкости, находящийся у задвижки остановился, а вся жидкость в трубе 2 продолжает двигаться с прежней скоростью v. Через некоторое время начнут останавливаться и другие слои жидкости слева от задвижки, т.е. фронт остановившейся жидкости будет перемещаться от задвижки к резервуару 1. Обозначим этот фронт сечением n–n. В остановившемся объеме между задвижкой сечением возникает дополнительное давление Δρ. Итак, слева от сечения n–n жидкость движется вправо со скоростью v и в трубе будет прежнее давление р; справа от сечения n–n; жидкость неподвижна и давление равно p+Δp. Фронт сжатия быстро перемещается в сторону резервуара. Скорость перемещения этого фронта называется скоростью распространение ударной волны c. Описанныйпроцесс будет продолжаться до тех пор, пока волна не дойдет до резервуара. Этим заканчивается первый этап гидравлического удара, в конце этого этапа вся жидкость в трубе неподвижна, сжата и находится под давлением p+Δp. Некоторый дополнительный объем жидкости из резервуара поступит в трубу.
Второй этап. Начало второго этапа совпадает с окончанием первого. Сжатая жидкость расширяясь, начнет двигаться в сторону резервуара. Сначала придут в движение слои жидкости вблизи резервуара, а затем и болееотдаленные, т.е. фронт спада давления n–n начнет повышаться от резервуара к задвижке. К концу фазы вся жидкость в трубе движется со скоростью υ в сторону резервуара давление в трубе восстанавливается до первоначального.
Третий этап. Начало третьего этапа характеризуется тем, что жидкость в трубе движется в сторону резервуара со скоростью v. У задвижки возникает слой жидкости, в котором давление на Δр меньше первоначальною. Теперь фронт n-n пониженного давления перемешается в сторону резервуара слева от него давление р, скорость направлена влево, справа жидкость неподвижна, давление в ней на
Δρ ниже нормального, Третий этап заканчивается приходом фронта n–n к резервуару.
Четвертый этап. Начало четвертого этапа характеризуется тем, что давление у входа в трубу со стороны резервуара р, а со стороны трубы меньше на Δp, т.е. р–Δp . Такое неуравновешенное состояние приведет к тому, что жидкость из резервуара начнет втекать в трубу со скоростью v и в ней будет повышаться до р.
Рассмотрим слой жидкости от задвижки до сечения n-n длиной Δl и площадью поперечного сечения w. Остановившаяся масса жидкости (m) в этом объеме потеряла количество движения за время Δt, в течение которого фронт повышенного давления передвинулся от задвижки влево на расстояние Δl:
mv=w Δlv.
Импульс силы за тот же промежуток времени равен ΔpwΔt.
Справа от сечения n–nдавление p + Δp. слева от него – р.
Произведение Δρw есть сила, остановившая объем жидкости w Δl за время Δt. Приравняв импульс силы к количеству движения получим
ΔpwΔt=w Δlv.
Откуда
Δp= Δlv/Δt,
где v скорость в трубопроводе до закрытия задвижки и поскольку Δl/Δt – скорость распространения ударной волны c, запишем
Δp= сv.
Эта формула была впервые получена Η.Е. Жуковским.
В реальных условиях процесс гидравлического удара протекает несколько иначе, так как при 6ольших давлениях, сопровождающих гидравлический удар, сказывайся как сжимаемость жидкости, так и упругость стенок водовода. Для случая упругих стенок Η.Ε. Жуковским была получена также формула для определения скорости ударной волны.
c=
где – плотность жидкости; d – внутренний диаметр трубы, d – толщина стенок трубы; Eж – модуль упругости жидкости (кг/м2), Етр – модуль упругости материала стенок трубы.
Если труба абсолютно жесткая Етр∞, то с0=Eж/r, тогда скорость распространения ударной волны с0 при абсолютно жестких стенках трубопровода равна скорости распространения звука в воде (с0=1425 м/с) и для воды:
с=1425/
Формула справедлива для так называемого прямого удара, т.е. когда время закрытия задвижки меньше фазы удара tз
Если tз>T удар называют непрямым, и ударное повышение давления Δp будет меньше определяемого по формуле. При таких условиях повышение давления можно найти по формуле Мишо
Δp= сv(T/tз)=
При условии, что tз=T результаты расчетов по этим формулам одинаковы.
Источники:
Исаев А.П., Сергеев Б.И. Дидур В.А. Гидравлика и гидромеханизация сельскохозяйственных процессов. М.: Агропромиздат, 1990. – 400 с. |
Пашков Н.Н., Долгачев Ф.М. Гидравлика. Основы Гидрологии.- М.: Энергоатомиздат, 1993. –448с.: ил. |
Калицун В.Н. Гидравлика, водоснабжение, канализация. – М.: Стройиздат, 2000. – 397 с. |
Штеренлихт. Гидравлика: Учебник для вузов.-М.: Энергоатомиздат, 2004. –640с. |