Файл: Занятие по химии iiiй группы элементов Заключение.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 30.11.2023

Просмотров: 73

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Во влажном воздухе быстро превращается в основный карбонат лантана:

4La + 3O2 → 2La2O3

Происхождение названия

В природе найдено 3 изотопа актиния: 225Ac, 227Ac, 228Ac.

2Ac + 6H2O = 2Ac(OH)3 ↓ + 3H2↑

Разбавленными кислотами:

2Ac + 6HCl = 2AcCl3 + 3H2↑

Атомный радиус актиния ненамного превышает атомный радиус лантана и составляет 1,88 Å.

Получение. Получение актиния из урановых руд нецелесообразно ввиду малого его в них содержания, а также большого сходства с присутствующими там редкоземельными элементами.

Выделение и очистка актиния от радия, тория и дочерних продуктов распада проводятся методами экстракции и ионного обмена.

Металлический актиний получают восстановлением трифторида актиния парами лития:

AcF3 + 3Li → 3LiF + Ac (1300-1350 °C, в атмосфере Ar)

Изотопы. Основная статья: Изотопы актиния

Хромит иттрия — материал для лучших высокотемпературных нагревателей сопротивления, способных эксплуатироваться в окислительной среде (воздух, кислород).



Легирование алюминия иттрием повышает на 7,5 % электропроводность изготовленных из него проводов.

Иттрий имеет высокие предел прочности и температуру плавления, поэтому способен создать значительную конкуренцию титану в любых областях применения последнего (ввиду того, что большинство сплавов иттрия обладает большей прочностью, чем сплавы титана, а кроме того, у сплавов иттрия отсутствует «ползучесть» под нагрузкой, которая ограничивает области применения титановых сплавов).

Иттрий вводят в жаростойкие сплавы никеля с хромом (нихромы) с целью повысить температуру эксплуатации нагревательной проволоки или ленты и с целью в 2—3 раза увеличить срок службы нагревательных обмоток (спиралей), что имеет большое экономическое значение (использование вместо иттрия скандия ещё в несколько раз увеличивает срок службы сплавов).

Изучается перспективный магнитный сплав — неодим-иттрий-кобальт.

Напыление (детонационное и плазменное) иттрия на детали двигателей внутреннего сгорания позволяет увеличить износостойкость деталей в 400—500 раз по сравнению с хромированием.

Ванадат иттрия, легированный европием, используются в производстве кинескопов цветных телевизоров.

Оксосульфид иттрия, активированный европием, применяется для производства люминофоров в цветном телевидении (красная компонента), а активированный тербием — для чёрно-белого телевидения.

Иттрий-алюминиевый гранат (ИАГ), легированный трёхвалентным церием с максимумом излучения в области жёлтого цвета используется в конструкции люминофорных белых светодиодов.

Добавлением иттрия в вольфрам резко снижают работу выхода электрона (у чистого иттрия 3,3 эВ), что используется для производства иттрированных вольфрамовых электродов для аргонодуговой сварки и составляет значительную статью расхода металлического иттрия.

Гексаборид иттрия имеет так же малую работу выхода электронов (2,22 эВ) и применяется для производства катодов мощных электронных пушек (электронно-лучевая сварка и резка в вакууме).

Изотоп Иттрий-90 (90Y) играет важную роль в лечении гепатоцеллюлярного и некоторых других видов рака. При этом производится трансартериальная радиоэмболизация опухоли микросферами, содержащими 90Y.

Бериллид иттрия (равно как и бериллид скандия) является одним из лучших конструкционных материалов аэрокосмической техники и, плавясь при температуре около 1920 °C, начинает окисляться на воздухе при 1670 °C (!). Удельная прочность такого материала весьма высока
, и при использовании его в качестве матрицы для наполнения нитевидными кристаллами (усами) можно создать материалы, имеющие фантастические прочностные и упругие характеристики.

Тетраборид иттрия находит применение в качестве материала для управляющих стержней атомных реакторов (имеет малое газовыделение по гелию и водороду).

Ортотанталат иттрия синтезируется и используется для производства рентгеноконтрастных покрытий.

Синтезированы иттрий-алюминиевые гранаты (ИАГ), имеющие ценные физико-химические свойства, которые могут применяться и в ювелирном деле, и уже довольно давно применяемые в качестве технологичных и относительно дешёвых материалов для твердотельных лазеров. Важным лазерным материалом является ИСГГ — иттрий-скандий-галлиевый гранат.

Гидрид иттрия-железа применяют как аккумулятор водорода с высокой ёмкостью и достаточно дешёвый.

Лантан — блестящий серебристо-белый металл, в чистом состоянии — ковкий и тягучий. Слабо парамагнитен. Кристаллическая структура плотноупакованная типа плотнейшей гексагональной упаковки.

Существует в трёх кристаллических модификациях: α-La с гексагональной решёткой (а=0,3772 нм, с=1,2144 нм, z=4, пространственная группа Р63/ттс), β-La с кубической решёткой типа меди (а=0,5296 нм, z=4, пространственная группа Fm3m), γ-La с кубической объёмноцентрированной решёткой типа α-Fe (а=0,426 нм, z=2, пространственная группа Im3m, устойчив до 920 °C) температуры переходов α↔β 277 °C и β↔γ 861 °C. DH° полиморфных переходов: α:β — 0,36 кДж/моль, β:γ — 3,12 кДж/моль. При переходе из одной модификации в другую меняется плотность лантана: α-La имеет плотность 6,162-6,18 г/см3, β-La — 6,19 г/см3, γ-La — 5,97 г/см3.

Сплавляется с цинком, магнием, кальцием, таллием, оловом, свинцом, никелем, кобальтом, марганцем, ртутью, серебром, алюминием, медью и кадмием. С железом лантан образует пирофорный сплав.

По своим химическим свойствам лантан больше всего похож на 14 следующих за ним элементов, поэтому их называют лантаноидами. Металлический лантан обладает высокой химической активностью.

  • Во влажном воздухе быстро превращается в основный карбонат лантана:

4La + 3O2 → 2La2O3

La2O3 + 2CO2 + H2O → 2LaCO3(OH)

  • При 450 °С сгорает в кислороде с образованием оксида лантана(III):

4La + 3O2 →450oC 2La2O3



  • Медленно реагирует с холодной водой и быстро — с горячей, образуя гидроксид лантана (III):

2La + 6H2O →90oC 2La(OH)3 + 3H2

  • При нагревании лантан вступает в реакции со фтором, хлором, бромом и йодом, давая соответственно фторид, хлорид, бромид и йодид:

2La + 3F2 →100oC  2LaF3

2La + 3Cl2 →100oC  2LaCl3

2La+ 3Br2 →toC  2LaBr3

2La + 3I2 →toC  2LaI3

  • Легко взаимодействует с минеральными кислотами с образованием ионов La3+ и водорода. Вполне возможно, что в водном растворе ион La3+ в значительной степени существует как комплексный ион [La(OH2)9]3+:

2La + 3H2SO4 →H2O 2La3+ + 3SO42− + 3H2

Природный актиний состоит из одного радиоактивного изотопа, 227Ac. Известно тридцать шесть радиоизотопов, наиболее стабильные — 227Ac с периодом полураспада в 21,772 лет, 225Ac с периодом полураспада 10,0 дней и 226Ac с периодом полураспада 29,37 часа. Все оставшиеся радиоактивные изотопы имеют периоды полураспада менее 10 часов, и большинство из них имеет период полураспада менее 1 минуты. Самый короткоживущий изотоп актиния — 217Ac с периодом полураспада 69 наносекунд, который распадается через альфа-распад и электронный захват.

Очищенный 227Ac приходит в равновесие с продуктами распада через 185 дней. Он распадается в основном с излучением β-(98,8 %) и небольшого количества α-частиц (1,2 %), последующие продукты распада также относятся к ряду актиния. Изотопы актиния имеют атомный вес в диапазоне от 206 до 236 а.е.м.

Радиоактивные свойства некоторых изотопов актиния:

Таблица 2

Изотопактиния

Реакция получения

Типраспада

Периодполураспада

221Ac

232Th(d,9n)225Pa(α)→221Ac

α

1 сек.

222Ac

232Th(d,8n)226Pa(α)→222Ac

α

4,2 сек.

223Ac

232Th(d,7n)227Pa(α)→223Ac

α

2,2 мин.

224Ac

232Th(d,6n)228Pa(α)→224Ac

α

2,9 час.

225Ac

232Th(n,γ)233Th(β)→233Pa(β)→233U(α)→229Th(α)→225Ra(β)225Ac

α

10 сут.

226Ac

226Ra(d,2n)226Ac

α или β или электронный захват

29 час.

227Ac

235U(α)→231Th(β)→231Pa(α)→227Ac

α или β

21,7 лет

228Ac

232Th(α)→228Ra(β)→228Ac

β

6,13 час.

229Ac

228Ra(n,γ)229Ra(β)→229Ac

β

66 мин.

230Ac

232Th(d,α)230Ac

β

80 сек.

231Ac

232Th(γ,p)231Ac

β

7,5 мин.

232Ac

232Th(n,p)232Ac

β

35 сек.


227Ac в смеси с бериллием является источником нейтронов. Ac-Be-источники характеризуются малым выходом гамма-квантов, применяются в активационном анализе при определении Mn, Si, Al в рудах.

225Ac применяется для получения 213Bi, а также для использования в радиоиммунотерапии.

227Ac может использоваться в радиоизотопных источниках энергии.

228Ac применяют в качестве радиоактивного индикатора в химических исследованиях из-за его высокоэнергетического β-излучения.

Смесь изотопов 228Ac-228Ra используют в медицине как интенсивный источник γ-излучения.

Применение скандия в виде микролегирующей примеси оказывает значительное влияние на ряд практически важных сплавов, так, например, прибавление 0,4 % скандия к сплавам алюминий-магний повышает временное сопротивление разрыву на 35 %, а предел текучести на 65—84 %, и при этом относительное удлинение остаётся на уровне 20—27 %. Добавка 0,3—0,67 % к хрому повышает его устойчивость к окислению вплоть до температуры 1290 °C, и аналогичное, но ещё более ярко выраженное действие оказывает на жаростойкие сплавы типа «нихром» и в этой области применение скандия куда как эффективнее иттрия. Оксид скандия обладает рядом преимуществ для производства высокотемпературной керамики перед другими оксидами, так, прочность оксида скандия при нагревании возрастает и достигает максимума при 1030 °C, в то же время оксид скандия обладает минимальной теплопроводностью и высочайшей стойкостью к термоудару. Скандат иттрия — это один из лучших материалов для конструкций, работающих при высоких температурах. Определённое количество оксида скандия постоянно расходуется для производства германатных стёкол для оптоэлектроники.

Главным по объёму применением скандия является его применение в алюминиево-скандиевых сплавах, применяемых в спортивной экипировке (мотоциклы, велосипеды, бейсбольные биты и т. п.) — везде, где требуются высокопрочные материалы. В сплаве с алюминием скандий обеспечивает дополнительную прочность и ковкость.

Например, легирование алюмо-магниевого сплава АМг6 скандием в отсутствие дополнительного упрочнения повышает предел прочности с 32 до 36 кгс/мм2, а предел текучести — с 16 до 24 кгс/мм2 (после 30-процентной нагартовки те же показатели составляют соответственно 42 и 33 кгс/мм2 у АМг6НПП против 45 и 36 кгс/мм2 у сплава 01570Н). Для сравнения, предел прочности на разрыв у чистого скандия около 400 МПа (40 кгс/мм
2), у титана, например, 250—350 МПа, а у нелегированного иттрия — 300 МПа. Применение скандиевых сплавов в авиации и гражданском ракетостроении позволит значительно снизить стоимость перевозок и резко повысить надёжность эксплуатируемых систем, в то же время при снижении цен на скандий и его применение для производства автомобильных двигателей так же значительно увеличит их ресурс и частично КПД. Очень важно и то обстоятельство, что скандий упрочняет алюминиевые сплавы, легированные гафнием.

Важной и практически не изученной областью применения скандия является то обстоятельство, что подобно легированию иттрием алюминия легирование чистого алюминия скандием также повышает электропроводность проводов, и эффект резкого упрочнения имеет большие перспективы для применения такого сплава для транспортировки электроэнергии (ЛЭП). Сплавы скандия — наиболее перспективные материалы в производстве управляемых снарядов. Ряд специальных сплавов скандия, композитов на скандиевой связке весьма перспективен в области конструирования скелета киборгов. В последние годы важная роль скандия (и отчасти иттрия и лютеция) выявилась в производстве некоторых по составу суперпрочных мартенситностареющих сталей, некоторые образцы которых показали прочность свыше 700 кг/мм2 (свыше 7000 МПа).

Некоторое количество скандия расходуется для легирования жаростойких сплавов никеля с хромом и железом (нихромы и фехрали) для резкого увеличения срока службы при использовании в качестве нагревательной обмотки для печей сопротивления.

Скандий используется для получения сверхтвёрдых материалов. Так, например, легирование карбида титана карбидом скандия весьма резко поднимает микротвёрдость (в 2 раза), что делает этот новый материал четвёртым по твёрдости после алмаза (около 98,7—120 ГПа), нитрида бора (боразона), (около 77—87 ГПа), сплава бор-углерод-кремний (около 68—77 ГПа), и существенно больше, чем у карбида бора (43,2—52 ГПа), карбида кремния (37 ГПа). Микротвёрдость сплава карбида скандия и карбида титана около 53,4 ГПа (у карбида титана, например, 29,5 ГПа). Особенно интересны сплавы скандия с бериллием, обладающие уникальными характеристиками по прочности и жаростойкости.

Так, например, бериллид скандия (1 атом скандия и 13 атомов бериллия) обладает наивысшим благоприятным сочетанием плотности, прочности и высокой температуры плавления, и во многих