Файл: Состав и свойство вычислительных систем. Информационное и математическое обеспечение вычислительных систем..pdf

ВУЗ: Не указан

Категория: Курсовая работа

Дисциплина: Не указана

Добавлен: 28.03.2023

Просмотров: 173

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Архитектура МКМД предполагает, что все процессоры системы работают по своим программам с собственным потоком команд. В простейшем случае они могут быть автономны и независимы. Такая схема использования ВС часто применяется на многих крупных вычислительных центрах для увеличения пропускной способности центра. Больший интерес представляет возможность согласованной работы ЭВМ (процессоров), когда каждый элемент делает часть общей задачи. Общая теоретическая база такого вида работ практически отсутствует. Но можно привести примеры большой эффективности этой модели вычислений. Подобные системы могут быть многомашинными и многопроцессорными. Например, отечественный проект машины динамической архитектуры (МДА) — ЕС-2704, ЕС-2127 — позволял одновременно использовать сотни процессоров.

1.4. Архитектура вычислительных систем.

Архитектура ВС — совокупность характеристик и параметров, определяющих функционально-логическую и структурную организацию системы. Понятие архитектуры охватывает общие принципы построения и функционирования, наиболее существенные для пользователей, которых больше интересуют возможности систем, а не детали их технического исполнения. Поскольку ВС появились как параллельные системы, то и рассмотрим классификацию архитектур с этой точки зрения.

Рис.5 Классификация Майкла Флинна

Эта классификация архитектур была предложена М. Флинном в начале 60-х гг (Рис.5). В её основу заложено два возможных вида параллелизма: независимость потоков заданий (команд), существующих в системе, и независимость (несвязанность) данных, обрабатываемых в каждом потоке. Классификация до настоящего времени еще не потеряла своего значения. Как и любая классификация, она носит временный и условный характер. Своим долголетием она обязана тому, что оказалась справедливой для ВС, в которых ЭВМ и процессоры реализуют программные последовательные методы вычислений. С появлением систем, ориентированных на потоки данных и использование ассоциативной обработки, данная классификация может быть некорректной.

Согласно этой классификации, существует четыре основных архитектуры ВС:

• одиночный поток команд - одиночный поток данных (ОКОД), в английском варианте

SISD - одиночный поток инструкций - одиночный поток данных;


• одиночный поток команд — множественный поток данных (ОКМД)

SIMD – одиночный поток инструкций – одиночный поток данных;

• множественный поток команд — одиночный поток данных (МКОД),

MISD - множественный поток инструкций - одиночный поток данных;

• множественный поток команд — множественный поток данных (МКМД),

MIMD - множественный поток инструкций - множественный поток данных.

Коротко рассмотрим отличительные особенности каждой из архитектур.

Архитектура ОКОД охватывает все однопроцессорные и одномашинные варианты систем, т.е. с одним вычислителем. Все ЭВМ классической структуры попадают в этот класс. Здесь параллелизм вычислений обеспечивается путем совмещения выполнения операций отдельными блоками АЛУ, а также параллельной работы устройств ввода-вывода информации и процессора. Закономерности организации вычислительного процесса в этих структурах достаточно хорошо изучены.

Архитектура ОКМД предполагает создание структур векторной или матричной обработки. Системы этого типа обычно строятся как однородные, т.е. процессорные, элементы, входящие в систему, идентичны, и все они управляются одной и той же последовательностью команд. Но каждый процессор обрабатывает свой поток данных. Под эту схему хорошо подходят задачи обработки матриц или векторов (массивов), задачи решения систем линейных и нелинейных, алгебраических и дифференциальных уравнений, задачи теории поля и др. В структурах данной архитектуры желательно обеспечивать соединения между процессорами, соответствующие реализуемым математическим зависимостям. Эти связи напоминают матрицу, в которой каждый процессорный элемент связан с соседними.

Архитектура МКОД предполагает построение своеобразного процессорного конвейера, в котором результаты обработки передаются от одного процессора к другому по цепочке. Выгоды такого вида обработки понятны. Прототипом таких вычислений может служить схема любого производственного конвейера. В современных ЭВМ по этому принципу реализована схема совмещения операций, в которой параллельно работают различные функциональные блоки, и каждый из них делает свою часть в общем цикле обработки команды.

Архитектура МКМД предполагает, что все процессоры системы работают по своим программам с собственным потоком команд. В простейшем случае они могут быть автономны и независимы. Такая схема использования ВС часто применяется на многих крупных вычислительных центрах для увеличения пропускной способности центра. Больший интерес представляет возможность согласованной работы ЭВМ (процессоров), когда каждый элемент делает часть общей задачи. Общая теоретическая база такого вида работ практически отсутствует. Но можно привести примеры большой эффективности этой модели вычислений. Подобные системы могут быть многомашинными и многопроцессорными.


2. Основные области применения вычислительных систем.

Применение методов и средств информатики возможно во всех тех областях человеческой деятельности, в которых существует принципиальная возможность (и необходимость) регистрации и обработки информации. По этому поводу существует справедливое высказывание: "Применение вычислительных машин ограничено только рамками нашей фантазии". Сейчас трудно назвать такую сферу деятельности человека, в которой не применяют или не пытаются применить современные информационные технологии. Среди наиболее значительных областей применения средств обработки данных следует выделить:

1. Военное дело, например, системы противоракетной обороны, космические системы.

2. Моделирование физических явлений и исследование построенных моделей с помощью компьютеров.

3. Обработка конкретных экспериментальных данных при проведении математических, физических, химических, биологических, социологических, исторических, археологических и т. п. исследований.

4. Решение задач метеопрогноза.

5. Автоматизированные рабочие места (АРМ) специалиста, например, АРМ бухгалтера, руководителя, врача и т. д.

6. Системы автоматического проектирования, обеспечивающие поддержку работы инженера-конструктора, существенно повышающие производительность его труда и сокращающие сроки разработок.

7. Управление работой отдельных станков (станки с числовым программным управлением), роботы, робототехнические линии, цеха и заводы-автоматы.

8. Автоматизированные системы планирования и управления производством, начиная с отдельных предприятий и кончая управлением целыми отраслями (железнодорожный транспорт, авиация и т. д.).

9. Получение изображений внутренних частей непрозрачных тел, в том числе в медицине - компьютерная томография, и на производстве - контроль качества, не разрушающий изделий.

10. Системы массового обслуживания и информационно-справочные системы. Например, системы резервирования и продажи железнодорожных и авиабилетов.

11. Обслуживание крупных спортивных мероприятий - мировых и европейских чемпионатов, Олимпийских игр.

12. Базы данных правовой информации (быстрый доступ к нормативным актам, указам и постановлениям правительства, статьям Уголовного и других кодексов), криминалистические базы данных, хранящие сведения о преступниках и т. д.


13. Банковские и биржевые компьютерные системы.

14. Библиографические компьютерные системы.

15. Подготовка различных документов, отчетов и других печатных материалов, рекламное дело.

16. Компьютерная верстка и подготовка к изданию газет, журналов, книг.

17. Аранжировка музыкальных произведений, цветомузыка.

18. Скульптура и архитектура.

19. Компьютерный дизайн разрабатываемых устройств, помещений.

20. Компьютерная мультипликация и анимация ("оживление" изображений – воспроизведение последовательности изображений, создающее впечатление движения).

21. Машинный перевод с различных естественных языков.

22. Лингвистика, расшифровка неизвестных языков.

23. Криптография – шифрование и расшифровка документов, доступ к которым должен быть ограничен.

24. Компьютерная геодезия и картография.

25. Обучающие, тестирующие и контролирующие программы.

26. Цифровая аудио- и видеозапись.

27. Новые средства связи, базирующиеся на локальных и глобальных сетях.

Также необходимо упомянуть еще об одной, весьма специфической области "применения" информационных технологий. Практически одновременно с появлением персональных компьютеров и ростом популярности компьютерных сетей появились программы, которые были названы компьютерными вирусами. Основной целью выполнения таких программ можно считать нанесение вреда аппаратным средствам, программам или данным конкурентов. Важным отличительным признаком вирусов является их способность к самораспространению, которое позволяет вирусам за небольшой промежуток времени "заразить" большое количество компьютеров и нанести максимальный вред.

2.1. Применение вычислительных систем в сфере автоматизирования рабочего места.

Автоматизированное рабочее место (АРМ) — это рабочее место специалиста, оснащенное персональным компьютером, программным обеспечением и совокупностью информационных ре­сурсов индивидуального или коллективного пользования, которые позволяют ему вести обработку данных с целью получения информации, обеспечивающей поддержку принимаемых им решений при выполнении профессиональных функций (Рис.6).

Рис.6 Автоматизированное рабочее место


Отдел, оснащенный совокупностью АРМ работников этой службы, становится автоматизированным подразделением. В нем значительная часть рутинной работы по переработке информации выполняется компьютером. Вместе с тем специалист может активно вмешиваться в процесс решения задач обработки дан­ных, самостоятельно формируя информацию, позволяющую при­нимать обоснованные решения. Компьютер становится повседневным орудием труда специалиста, органично вписываясь в технологию его работы. При: акцент переносится с формально-логических аспектов информации на процесс принятия решений. Такая технология сокращает поток бумажных носителей, снижает трудоемкость выполняемых работ, повышает профессиональный уровень работников и комфортность условий их работы: Как и при ручной технологии организации работы, специалист несет полную персональную ответственность за весь процесс, но, продолжая выполнять традиционные функции, он выступает и в роли оператора ПЭВМ, становясь непосредственным участником процесса автоматизированной обработки информации.

Структура АРМ включает пять основных компонентов:  

  • персональный компьютер;  
  • комплекс программ для обработки информации;  
  • обучающую систему (гипертекстовую систему документа­ции для пользователя;
  • интегрированную систему подсказок;
  • систему закладок, указателей и справок;
  • систему при­меров;
  • систему контроля и обнаружения ошибок);  
  • средства настройки АРМ (алгоритмов расчетов, анали­тических и технологических параметров;
  • устройств: принтера, сканера, модема; эргономики экранных форм и т. д.);  
  • средства эксплуатации АРМ (классификаторы, генератор отчетных форм, инструментарий приема/передачи данных по каналам связи, копирования и сохранности данных, ад­министратор баз данных, мониторинг работы конкретных пользователей).

Кроме этого, АРМ комплектуется документацией и методи­ческими материалами по применению программ, а также регла­ментами выполнения работ по обработке информации. Конкрет­ная насыщенность каждой из компонент определяется решаемы­ми задачами. АРМ могут функционировать автономно или в составе компь­ютерной сети. При автономном режиме работы АРМ создаются для решения отдельных функциональных задач и не могут опера­тивно использовать всю информационную базу экономического объекта, а обмен информацией между различными АРМ выполня­ется с помощью машинных носителей. Работа на базе компью­терных сетей позволяет организовать обмен данными между АРМ по каналам связи, объединить информационное простран­ство объекта управления и организовать доступ к нему любого работника в пределах его полномочий. Каждое АРМ рассматри­вается как самостоятельная подсистема, а вместе они составляют единое целое. При этом начальник отдела имеет возможность ру­ководить процессом решения функциональных задач и интегри­ровать результаты работы отдельных специалистов, оперативно получая обработанную информацию для принятия решений. В то же время сохраняется возможность автономной работы каждого специалиста.