Файл: Состав и свойство вычислительных систем. Информационное и математическое обеспечение вычислительных систем..pdf

ВУЗ: Не указан

Категория: Курсовая работа

Дисциплина: Не указана

Добавлен: 28.03.2023

Просмотров: 172

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

ВВЕДЕНИЕ.

В данной теме мы рассмотрим основы и применения вычислительных систем и в некоторых сфера таких как автоматизация рабочих мест и медицине.

Вычисление можно рассматривать как чисто физическое явление, происходящее внутри замкнутой физической системы, называемой компьютером. Примеры таких физических систем включают цифровые компьютеры, механические компьютеры, квантовые компьютеры, ДНК-компьютеры, молекулярные компьютеры, компьютеры на основе микрожидкостей, аналоговые компьютеры или сетевые оборудования. Эта точка зрения была принята физикой вычислений, разделом теоретической физики, а также областью естественных вычислений.

Исследования в области вычислительных систем сосредоточены на разработке вычислительных моделей, использовании вычислительных ресурсов в параллельных распределенных средах, базах данных, графических представлениях и т.д. Разработка методов вычислительного интеллекта и интеллектуального анализа данных для моделирования сложных систем была основным направлением исследований. Работа в основном связана с разработкой алгоритмов, основанных на нечеткой логике, нейронных сетях, машинах опорных векторов, генетических алгоритмах и методах оптимизации, вдохновленных природой. Эти методы широко применяются в большинстве областей знаний, позволяя разрабатывать партнерские проекты с другими исследовательскими областями.

Вычислительные методы, до сих пор ограничивавшихся детерминированными решениями, начали работать с неопределенностями. Начиная с девяностых годов, эволюция алгоритмов и увеличение вычислительной мощности компьютеров позволили разработать надежные модели из баз данных. В последнее время исследования были сосредоточены на извлечении знаний из больших коллекций документов.

Исследования вычислительных систем и технологий поддерживаются Агентством перспективных исследовательских проектов обороны, разведывательной деятельностью по перспективным исследовательским проектам, Министерством энергетики, Национальным научным фондом, Управлением военно-морских исследований, Министерством обороны и Государственным департаментом.

Состав вычислительных систем

Состав вычислительной системы называется конфигурацией. Аппаратные и программные средства вычислительной техники принято рассматривать отдельно. Соответственно, отдельно рассматривают аппаратную конфигурацию вычислительных систем и их программную конфигурацию. Такой принцип разделения имеет для информатики особое значение, поскольку очень часто решение одних и тех же задач может обеспечиваться как аппаратными, так и программными средствами. Критериями выбора аппаратного или программного решения являются производительность и эффективность. Обычно принято считать, что аппаратные решения в среднем оказываются дороже, зато реализация программных решений требует более высокой квалификации персонала.


К аппаратному обеспечению вычислительных систем относятся устройства и приборы, образующие аппаратную конфигурацию. Современные компьютеры и вычислительные комплексы имеют блочно-модульную конструкцию — аппаратную конфигурацию, необходимую для исполнения конкретных видов работ, можно собирать из готовых узлов и блоков.

По способу расположения устройств относительно центрального процессорного устройства (ЦПУ— Central Processing Unit, CPU) различают внутренние и внешние устройства. Внешними, как правило, являются большинство устройств ввода-вывода данных (их также называют периферийными устройствами) и некоторые устройства, предназначенные для длительного хранения данных.

Согласование между отдельными узлами и блоками выполняют с помощью переходных аппаратно-логических устройств, называемых аппаратными интерфейсами. Стандарты на аппаратные интерфейсы в вычислительной технике называют протоколами. Таким образом, протокол — это совокупность технических условий, которые должны быть обеспечены разработчиками устройств для успешного согласования их работы с другими устройствами.

Многочисленные интерфейсы, присутствующие в архитектуре любой вычислительной системы, можно условно разделить на две большие группы: последовательные и параллельные. Через последовательный интерфейс данные передаются последовательно, бит за битом, а через параллельный — одновременно группами битов. Количество битов, участвующих в одной посылке, определяется разрядностью интерфейса, например восьмиразрядные параллельные интерфейсы передают один байт (8 бит) за один цикл.

Параллельные интерфейсы обычно имеют более сложное устройство, чем последовательные, но обеспечивают более высокую производительность. Их применяют там, где важна скорость передачи данных: для подключения печатающих устройств, устройств ввода графической информации, устройств записи данных на внешний носитель и т. п. Производительность параллельных интерфейсов измеряют байтами в секунду (байт/с; Кбайт/с; Мбайт/с).

Устройство последовательных интерфейсов проще; как правило, для них не надо синхронизировать работу передающего и принимающего устройства (поэтому их часто называют асинхронными интерфейсами), но пропускная способность их меньше и коэффициент полезного действия ниже, так как из-за отсутствия синхронизации посылок полезные данные предваряют и завершают посылками служебных данных, то есть на один байт полезных данных могут приходиться 1-3 служебных бита (состав и структуру посылки определяет конкретный протокол).


Поскольку обмен данными через последовательные устройства производится не байтами, а битами, их производительность измеряют битами в секунду (бит/с, Кбит/с, Мбит/с). Несмотря на кажущуюся простоту перевода единиц измерения скорости последовательной передачи в единицы измерения скорости параллельной передачи данных путем механического деления на 8, такой пересчет не выполняют, поскольку он не корректен из-за наличия служебных данных. В крайнем случае, с поправкой на служебные данные, иногда скорость последовательных устройств выражают в знаках в секунду или, что тоже самое, в символах в секунду (с/с), но эта величина имеет не технический, а справочный, потребительский характер.

Последовательные интерфейсы применяют для подключения «медленных» устройств (простейших устройств печати низкого качества, устройств ввода и вывода знаковой и сигнальной информации, контрольных датчиков, малопроизводительных устройств связи и т. п.), а также в тех случаях, когда нет существенных ограничений по продолжительности обмена данными (большинство цифровых фотокамер).

Рис. 1 – Взаимодействия программного и аппаратного обеспечения

Программы — это упорядоченные последовательности команд. Конечная цель любой компьютерной программы — управление аппаратными средствами. Даже если на первый взгляд программа никак не взаимодействует с оборудованием, не требует никакого ввода данных с устройств ввода и не осуществляет вывод данных на устройства вывода, все равно ее работа основана на управлении аппаратными устройствами компьютера.

Программное и аппаратное обеспечение в компьютере работают в неразрывной связи и в непрерывном взаимодействии (Рис. 1). Несмотря на то, что мы рассматриваем эти две категории отдельно, нельзя забывать, что между ними существует диалектическая связь, и раздельное их рассмотрение является по меньшей мере условным.

Состав программного обеспечения вычислительной системы называют программной конфигурацией. Между программами, как и между физическими узлами и блоками существует взаимосвязь — многие программы работают, опираясь на другие программы более низкого уровня, то есть, мы можем говорить о межпрограммном интерфейсе. Возможность существования такого интерфейса тоже основана на существовании технических условий и протоколов взаимодействия, а на практике он обеспечивается распределением программного обеспечения на несколько взаимодействующих между собой уровней. Уровни программного обеспечения представляют собой пирамидальную конструкцию. Каждый следующий уровень опирается на программное обеспечение предшествующих уровней. Такое членение удобно для всех этапов работы с вычислительной системой, начиная с установки программ до практической эксплуатации и технического обслуживания. Обратите внимание на то, что каждый вышележащий уровень повышает функциональность всей системы. Так, например, вычислительная система с программным обеспечением базового уровня не способна выполнять большинство функций, но позволяет установить системное программное обеспечение.


Базовый уровень является самым низким уровнем программного обеспечения, представляет базовое программное обеспечение. Оно отвечает за взаимодействие с базовыми аппаратными средствами. Как правило, базовые программные средства непосредственно входят в состав базового оборудования и хранятся в специальных микросхемах, называемых постоянными запоминающими устройствами (ПЗУ— Read Only Memory, ROM). Программы и данные записываются («прошиваются») в микросхемы ПЗУ на этапе производства и не могут быть изменены в процессе эксплуатации.

В тех случаях, когда изменение базовых программных средств во время эксплуатации является технически целесообразным, вместо микросхем ПЗУ применяют перепрограммируемые постоянные запоминающие устройства (ППЗУ — Erasable and Programmable Read Only Memory, EPROM). В этом случае изменение содержания ПЗУ можно выполнять как непосредственно в составе вычислительной системы (такая технология называется флэш-технологией), так и вне ее, на специальных устройствах, называемых программаторами.

Системный уровень — переходный. Программы, работающие на этом уровне, обеспечивают взаимодействие прочих программ компьютерной системы с программами базового уровня и непосредственно с аппаратным обеспечением, то есть выполняют «посреднические» функции.

1.1. Понятие вычислительных систем

Термин вычислительная система появился в начале - середине 60-х гг. при появлении ЭВМ III поколения. Это время знаменовалось переходом на новую элементную базу - интегральные схемы. Следствием этого явилось появление новых технических решений: разделение процессов обработки информации и ее ввода-вывода, множественный доступ и коллективное использование вычислительных ресурсов в пространстве и во времени. Появились сложные режимы работы ЭВМ - многопользовательская и многопрограммная обработка.

Под вычислительной системой (ВС) понимают совокупность взаимосвязанных и взаимодействующих процессоров или ЭВМ, периферийного оборудования и программного обеспечения, предназначенную для сбора, хранения, обработки и распределения информации.


Отличительной особенностью ВС по отношению к ЭВМ является наличие в них нескольких вычислителей, реализующих параллельную обработку. Создание ВС преследует следующие основные цели: повышение производительности системы за счет ускорения процессов обработки данных, повышение надежности и достоверности вычислений, предоставление пользователям дополнительных сервисных услуг и т.д.


Параллелизм в вычислениях в значительной степени усложняет управление вычислительным процессом, использование технических и программных ресурсов. Эти функции выполняет операционная система ВС.

В программном обеспечении ВС операционная система занимает основное положение, поскольку осуществляет планирование и контроль всего вычислительного процесса. Любой из компонентов программного обеспечения обязательно работает под управлением ОС.

В соответствии с условиями применения различают три режима ОС: пакетной обработки, разделения времени и реального времени.

В режиме пакетной обработки ОС последовательно выполняет собранные в пакет задания. В этом режиме пользователь не имеет контакта с ЭВМ, получая лишь результаты вычислений.

В режиме разделения времени ОС одновременно выполняет несколько задач, допуская обращение каждого пользователя к ЭВМ.

В режиме реального времени ОС обеспечивает управление объектами в соответствии с принимаемыми входными сигналами. Время отклика ЭВМ с ОС реального времени на возмущающее воздействие должно быть минимальным.

1.2. История вычислительных систем

Известно, что компьютер был изобретен английским математиком Чарльзом Бэбиджем в конце восемнадцатого века. Его "аналитическая машина" так и не смогла но-настоящему заработать, потому что технологии того времени не удовлетворяли требованиям по изготовлению деталей точной механики, которые были необходимы для вычислительной техники. Известно также, что этот компьютер не имел операционной системы.

Рис.2 Компьютерная система 1940-х

Некоторый прогресс в создании цифровых вычислительных машин произошел после второй мировой войны. В середине 40-х были созданы первые ламповые вычислительные устройства (Рис.2). В то время одна и та же группа людей участвовала и в проектировании, и в эксплуатации, и в программировании вычислительной машины. Это была скорее научно-исследовательская работа в области вычислительной техники, а не использование компьютеров в качестве инструмента решения каких-либо практических задач из других прикладных областей. Программирование осуществлялось исключительно на машинном языке. Об операционных системах не было и речи, все задачи организации вычислительного процесса решались вручную каждым программистом с пульта управления. Программа загружалась в память компьютера с колоды перфокарт. Вычислительная система могла одновременно выполнять только одну операцию: операцию ввода-вывода или самовычисление. В конце этого периода появляется первое системное программное обеспечение. Возникают прообразы первых компиляторов символических языков, а в 1954г. Нет Рочестер разрабатывает ассемблер для IBM – 701. В целом первый период характеризуется крайне высокой стоимостью вычислительной системы, их малым количеством, и низкой эффективностью использования.