Файл: Оглавление Тяжесть труда 2.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 12.12.2023

Просмотров: 150

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
создаваемая им энергетическая нагрузка, т.е. поток энергии, проходящий через единицу облучаемой поверхности за время действия. Максимальное значение плотности потока энергии не должно превышать 10 Вт/кв.м.

Уровни ЭМП на рабочих местах контролируются измерением в диапазоне частот 60 кГц-300 МГц напряженности электрической и магнитных составляющих, а в диапазоне частот 300 МГц-300 ГТц плотности потока энергии ЭМП с учетом времени пребывания в зоне облучения.

Электростатическое поле (ЭСП) - это поле неподвижных электрических зарядов, взаимодействующих между собой. ЭСП характеризуется напряженностью (Е), то есть отношением силы, действующей в поле на точечный заряд, к величине этого заряда. Напряженность ЭСП измеряется в В/м. ЭСП возникают в энергетических установках, в электротехнологических процессах. ЭСП используется в электрогазоочистке, при нанесении лакокрасочных покрытий. ЭСП оказывает негативное влияние на ЦНС; у работающих в зоне ЭСП возникает головная боль, нарушение сна и др. В источниках ЭСП, помимо биологического воздействия, определенную опасность представляет аэроионы. Источником аэроионов является корона, возникающая на проводах при напряженности Е >50 кВ/м. Концентрация аэроионов, превышающая 10 см, оказывает негативное влияние на человека. Допустимые уровни напряженности ЭСП установлены ГОСТ 12.1.045-84 "Электростатические поля. Допустимые уровни на рабочих местах и требования к проведению контроля". Допустимый уровень напряженности ЭСП устанавливается в зависимости от времени пребывания на рабочих местах. ПДУ напряженности ЭСП устанавливается равный 60 кВ/м в течение 1 часа. При напряженности ЭСП менее 20 кВ/м время пребывания в ЭСП не регламентируется. Допустимое время пребывания в ЭСП без средств защиты (tдоп) в часах определяется по формуле:
tдоп = Епрфак
где Ефак - фактическое значение напряженности электрического поля, кВ/м.

Для измерения напряженности ЭСП используются измеритель напряженности ЭСП ИНЭП-20Д и измеритель ИЭ-П.


4. Защитное заземление, зануление, отключение

4.1. Общие сведения



Существуют следующие способы защиты, применяемые отдельно или в сочетании друг с другом: защитное заземление, зануление, защитное отключение, электрическое разделение сетей разного напряжения, применение малого напряжения, изоляция токоведущих частей, выравнивание потенциалов.

В электроустановках (ЭУ) напряжением до 1000 В с изолированной нейтралью и в ЭУ постоянного тока с изолированной средней точкой применяют защитное заземление в сочетании с контролем изоляции или защитное отключение.

В этих электроустановках сеть напряжением до 1000 В, связанную с сетью напряжением выше 1000 В через трансформатор, защищают от появления в этой сети высокого напряжения при повреждении изоляции между обмотками низшего и высшего напряжения пробивным предохранителем, который может быть установлен в каждой фазе на стороне низшего напряжения трансформатора.

В электроустановках напряжением до 1000 В с глухозаземленной нейтралью или заземленной средней точкой в ЭУ постоянного тока применяется зануление или защитное отключение. В этих ЭУ заземление корпусов электроприемников без их заземления запрещается.

Защитное отключение применяется в качестве основного или дополнительного способа защиты в случае, если не может быть обеспечена безопасность применением защитного заземления или зануления или их применение вызывает трудности.

При невозможности применения защитного заземления, зануления или защитного отключения допускается обслуживание ЭУ с изолирующих площадок.

4.2. Защитное заземление



Заземлением (рис. 1) называется соединение с землей нетоковедущих металлических частей электрооборудования через металлические детали, закладываемые в землю и называемые заземлителями, и детали, прокладываемые между заземлителями и корпусами электрооборудования, называемые заземляющими проводниками. Проводники и заземлители обычно делаются из низкоуглеродистой стали, называемой в просторечии ж

елезом.

Заземлители в виде штырей, вбиваемых в землю, называются электродами, и могут быть одиночными или групповыми. Заземлитель имеет характеристики, обусловленные стеканием по нему тока в землю. К характеристикам заземлителя относятся:

  • н
    Рис. 1. Схема заземления в сети с изолированной нейтралью при наличии короткого замыкания:

    Zc, Zв - полные сопротивления проводов относительно земли, Iк – ток короткого замыкания, F – разрядник.
    апряжение на заземлителе;

  • изменение потенциалов точек в земле вокруг заземлителя в зависимости от их расстояния от заземлителя в зоне растекания тока — вид потенциальной кривой;

  • вид линий равного потенциала — эквипотенциальных линий на поверхности земли;

  • сопротивление заземляющего устройства;

  • напряжения прикосновения и шага.

На рис. 2 показана схема простого заземлителя в виде стержня или трубы, з абиваемых в землю и вид потенциальных кривых и эквипотенциальных линий.

П
Рис. 2. Распределение потенциалов у поверхности землив зоне растекания одиночного заземлителя:

1 – заземляющий проводник, 2 – заземлитель, 3 – эквипотенциальные линии.

– ось величин потенциала, 0х – ось расстояний до заземлителя, φ(х) – потенциальная кривая, Iз – ток в заземлителе, φ3 = U3 напряжение на заземлителе.
ри расстоянии менее 40 м между одиночными заземлителями в групповом заземлителе их зоны растекания накладываются друг на друга, и получается одна зона растекания группового заземлителя, которой соответствует своя потенциальная кривая.

4.3. Напряжение прикосновения



Напряжением прикосновения называется напряжение на корпусе электрооборудования с поврежденной изоляцией, к которому может прикоснуться человек. Это напряжение зависит от состояния заземления, расстояния между человеком и заземлителем, сопротивления основания, на котором стоит человек.


Н
Рис. 3. Зависимость напряжения прикосновения от расстояния между человеком и заземлителем при а) одиночном и б) групповом заземлителях:

Uпр – напряжение прикосновения.
а рис. 3, о показано влияние положения человека относительно заземлителя при одиночном заземлителе на величину напряжения прикосновения. Напряжение прикосновения максимально в положении 1 человека, когда он стоит в зоне нулевого потенциала и касается заземленного оборудования; равняется нулю в положении 2, когда человек стоит на заземлителе или его проекции на поверхность земли, в некотором промежуточном положении человека напряжение прикосновения имеет промежуточное значение, которое меняется от О до Uз.

На рис. 3, б показана зависимость напряжения прикосновения от положения человека при групповом заземлителе. В этом случае Uпp имеет наибольшее значение в положении 1 человека, когда он находится между электродами заземлителя, наименьшее значение в положении 2, когда он стоит на заземлителе или его проекции на поверхность земли, в любом промежуточном положении Uпр изменяется от 6 до максимального значения.

Таблица 1.

Пределы удельных электрических сопротивлений грунта


Грунт

ρ, Ом ∙ м

Грунт

ρ, Ом ∙ м

Глина

8…70

Суглинок

40…150

Чернозем

9…53

Супесь

150…400

Торф

10…30

Песок

400…700

Садовая земля

30…60

Каменистый

500…800




4.4. Напряжение шага



Напряжение шага возникает между ногами человека, стоящего на земле, из-за разности потенциалов на поверхности земли при растекании в земле тока замыкания на землю. Напряжение шага отсутствует, если человек стоит или на линии равного потенциала или вне зоны растекания тока, т. е. на расстоянии более 20 м от заземлителя.

На рис. 4 показана зависимость величины напряжения шага от расстояния между ч еловеком и одиночным заземлителем. Напряжение шага наибольшее в положении 1 человека, когда он стоит одной ногой на заземлителе. В положении человека между заземлителем и зоной нулевого потенциала, когда шаг направлен по радиусу к заземлителю, напряжение шага имеет промежуточное значение.

З
Рис. 4. Величина напряжения шага в зависимости от расстояния между человеком и заземлителем:

Uш – напряжение шага.
аземление предназначается для устранения опасности поражения человека электрическим током во время прикосновения к нетоковедущим частям, находящимся под напряжением. Это достигается путем снижения до безопасных пределов напряжения прикосновения и шага за счет малого сопротивления заземлителя. Областью применения защитного заземления являются сети переменного и постоянного тока с изолированной нейтралью источника напряжения или трансформатора.

Не требуют защитного заземления электроустановки переменного тока напряжением до 42 В и постоянного тока до 110 В.

Величина сопротивления заземляющего устройства нормируется «Правилами устройства электроустановок» (ПУЭ). Эта величина для электроустановок до 1000 В с изолированной нейтралью должна быть не более 4 Ом, а если мощность питающих сеть генераторов или трансформаторов, или их суммарная мощность не более 100 кВА, то сопротивление должно быть не более 10 Ом.

Для заземления могут быть использованы детали уже существующих сооружений, которые называются естественными заземлителями:

  • металлические и железобетонные конструкции зданий и сооружений, находящиеся в соприкосновении с землей;

  • металлические трубопроводы, проложенные в земле, за исключением трубопроводов горючих жидкостей и газов;

  • свинцовые оболочки кабелей, проложенных в земле;

  • обсадные трубы скважин и т. д.