Файл: 2воп. При подаче на pnпереход переменного напряжения проявляются емкостные свойства.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 11.01.2024

Просмотров: 46

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

1 билет

2воп. При подаче на p-n-переход переменного напряжения проявляются емкостные свойства.

Образование p-n-перехода связано с возникновением пространственного заряда, создаваемого неподвижными ионами атомов доноров и акцепторов. Приложенное к p-n-переходу внешнее напряжение изменяет величину пространственного заряда в переходе. Следовательно, p-n переход ведет себя как своеобразный плоский конденсатор, обкладками которого служат области n- и p-типа вне перехода, а изолятором является область пространственного заряда, обедненная носителями заряда и имеющая большое сопротивление.

17

Такая емкость p-n-перехода называется барьерной. Барьерная емкость CБ может быть рассчитана по формуле

,

где

S - площадь p-n-перехода;  ·0 - относительная () и абсолютная (0) диэлектрические проницаемости;  - ширина p-n-перехода.

Особенностью барьерной емкости является ее зависимость от внешнего приложенного напряжения. С учетом (2.2) барьерная емкость для резкого перехода рассчитывается по формуле:

  

2билет Различают собственные и примесные полупроводники. К числу собственных относятся чистые полупроводники (т.е полупроводники без примесей или с концентрацией примеси настолько малой, что она не оказывает существенного влияния на удельную проводимость полупроводника). Проводимостьтаких чистых полупроводников называетсясобственной.

В примесных полупроводниках электрические свойства определяются примесями, вводимыми искусственно в очень малых количествах. Например, введение в кремний всего лишь 0,001% бора увеличивает его проводимость при комнатной температуре примерно в 1000 раз.

Проводимость полупроводников, обусловленная примесями, называется примесной проводимостью.

2воп. Пробой p-n перехода


Р езкое возрастание обратного тока, наступающее даже при незначительном увеличении обратного напряжения сверх определенного значения, называют пробоем перехода. Природа пробоя может быть различной: он может быть электрическим, при котором p n-переход не разрушается и сохраняет работоспособность, и тепловым, при котором разрушается кристаллическая структура полупроводника.


Электрический пробой связан со значительным увеличением напряжённости электрического поля в p-n переходе (более 7…10 В/см). Наблюдаются два типа электрического пробоя.

В полупроводниках с узким p-n переходом (что обеспечивается высокой концентрацией примесей) возникает туннельный пробой, связанный с туннельным эффектом, когда под воздействием очень сильного поля носители заряда могут переходить из одной области в другую через p-n переход без затраты энергии. Туннельный пробой наблюдается при обратном напряжении порядка нескольких вольт (до 10 В).

В полупроводниках с широким p-n переходом может произойти лавинный пробой. Его механизм состоит в том, что в сильном электрическом поле может возникнуть ударная ионизация атомов p-n перехода; носители заряда на длине свободного пробега приобретают кинетическую энергию, достаточную для того, чтобы при столкновении с атомом кристаллической решётки полупроводника выбить электроны из ковалентных связей. Образовавшаяся при этом пара свободных носителей заряда (электрон – дырка) тоже примет участие в ударной ионизации. Процесс нарастает лавинообразно и приводит к значительному возрастанию обратного тока. Пробивное напряжение лавинного пробоя составляет десятки и сотни вольт.

Тепловой пробой возникает тогда, когда энергия, выделяемая в p-n переходе при прохождении через него обратного тока, превышает энергию, которую способен рассеять p-n переход. Происходит значительный перегрев перехода, и обратный ток, который является тепловым, резко возрастает, а перегрев увеличивается. Это приводит к лавинообразному увеличению тока, в результате чего и возникает тепловой пробой p-n перехода.

3 билет Диэлектрики

  • электроны полностью заполняют валентную зону, а зона проводимости пуста, там электронов нет, поэтому зона проводимости ток не проводит,

  • Валентная зона может ток проводить, но не проводит, потому что все состояния электронов в точности симметричны, и если есть состояние (хаотическое движение) .с импульсом р, то найдётся и состояние с импульсом -р,

  • каждое из этих состояний переносит ток, но направления этих токов противоположны, и в сумме переносимый ток равен нулю.




Рис.3.8 а

Металлы

  • электроны заполняют валентную зону только наполовину. При нулевой температуре (по Кельвину, т.е. –273оС) все нижние уровни заполнены электронами, а все верхние – пустые.

  • расстояния между уровнями очень малы, и малейшее возмущение системы, например, приложение маленького напряжения может вызвать смещение электронов из равновесного состояния, и нарушить симметрию в распределении электронов по скоростям.

Таким образом довольно легко возникает электрический ток, т.е. имеется электропроводность.

2воп. Стабилитрон или диод Зенера


Самым простым стабилизатором напряжения в электронике является радиоэлемент стабилитрон. Иногда его еще называют диодом Зенера. На схемах стабилитроны обозначаются примерно так:



В схемах стабилитрон включается последовательно с резистором:



где Uвх — входное напряжение, Uвых.ст.  — выходное стабилизированное напряжение

Если внимательно глянуть на схему, мы получили ни что иное, как Делитель напряжения.  Здесь все элементарно и просто:

Uвх=Uвых.стаб +Uрезистора

Или словами: входное напряжение равняется сумме напряжений на стабилитроне и на резисторе.

Эта схема называется параметрический стабилизатор на одном стабилитроне

Вольт-амперная характеристика стабилитрона


Думаю, не помешало бы рассмотреть Вольт амперную характеристику (ВАХ) стабилитрона. Выглядит она примерно как-то так:



где

Iпр — прямой ток, А

Uпр  — прямое напряжение, В

Эти два параметра в стабилитроне не используются

Uобр — обратное напряжение, В

Uст — номинальное напряжение стабилизации, В

Iст — номинальный ток стабилизации, А

Номинальный — это значит нормальный параметр, при котором  возможна долгосрочная работа радиоэлемента.


Imax — максимальный ток стабилитрона, А

Imin — минимальный ток стабилитрона, А

Iст, Imax, Imin — это  сила тока, которая течет через стабилитрон при его работе.

Так как стабилитрон работает именно в обратной полярности, в отличие от диода (стабилитрон подключают катодом к плюсу, а  диод катодом к минусу), то и рабочая область будет именно та, что отмечена красным прямоугольником.



Как мы видим, при каком-то напряжении Uобр  у нас график начинает падать вниз. В это время в стабилитроне происходит  такая интересная штука,  как пробой. Короче говоря,  он не может больше наращивать на себе напряжение, и в это время начинается возрастать сила тока  в стабилитроне. Самое  главное — не переборщить силу тока, больше чем Imax, иначе стабилитрону придет кердык. Самым лучшим рабочим режимом стабилитрона считается режим,  при котором сила тока через стабилитрон  находится где-то в середине между максимальным и минимальным его значением.  На графике это и будет рабочей точкой рабочего режима стабилитрона (пометил красным кружком).
4билет.
5билет Ток, обусловленный внешним электрическим полем, получил название дрейфового тока.

Ток, возникающий в результате диффузии носителей из области, где их концентрация повышена, в направлении области с более низкой концентрацией, называется диффузным бездрейфовым током.

Механизм возникновения диффузного тока можно объяснить так. Пусть по каким-либо причинам концентрация электронов в различных точках полупроводника неодинакова. Очевидно, что вероятность столкновения электронов друг с другом больше там, где концентрация их выше. Поэтому электрон, совершая хаотическое тепловое движение, в соответствии с общими законами теплового движения будет стремиться перейти в область меньших столкновений. В результате носители заряда, совершающие тепловое движение, будут смещаться из области с большей концентрацией в область с меньшей концентрацией их, что приведет к возникновению диффузного тока.


2воп



6билет. В каждом полупроводнике носители имеют некоторое среднее время жизни τ, так как генерируемые носители заряда могут рекомбинировать, встречаясь между собой и с различными дефектами решетки, τ характеризует время жизни неосновных (и неравновесных) носителей заряда, появляющихся, например, при воздействии на образец светом (условие равновесия np = ni2 - характеризует равновесные носители заряда при данной температуре). Время жизни определяется по формуле

τ = 1/υт N S (11)
где υт - тепловая скорость носителей, S - сечение захвата, N - концентрация ловушек.
Значения τn и τp могут находиться в зависимости от типа полупроводника, носителей, температуры и др. факторов в диапазоне от 10-16 до 10-2 с.

2воп. Стабилизаторы бывают параметрическими и компенсационными. Принцип действия параметрических состоит в том, что в них используются особенные свойства элементов, параметры которых, а именно сопротивление, изменяются так, что стабилизация становится возможной

7билет. Типы диодов по назначению
Править
Выпрямительные диоды предназначены для преобразования переменного тока в постоянный.
Импульсные диоды имеют малую длительность переходных процессов, предназначены для применения в импульсных режимах работы.
Детекторные диоды предназначены для детектирования сигнала
Смесительные диоды предназначены для преобразования высокочастотных сигналов в сигнал промежуточной частоты.
Переключательные диоды предназначены для применения в устройствах управления уровнем сверхвысокочастотной мощности.
Параметрические
Ограничительные диоды предназначены для защиты радио и бытовой аппаратуры от повышения сетевого напряжения.

2 воп.

8билет. иффузией называется процесс взаимного проникновения молекул одного вещества между молекулами другого. Диффузия наблюдается в газах, в жидкостях и даже в твердых телах. При контакте газов диффузия происходит всегда. Жидкости неограниченно диффундируют лишь при их хорошей растворимости друг в друге, например, керосин и растительное масло, вода и спирт.

Рассмотрим смесь двух газов, концентрации которых в разных точках сосуда различны. Вследствие теплового движения, начинается процесс выравнивания концентрации. Если плотность газа меняется в направлении оси ОХ и изменение плотности на расстоянии   равно  , то говорят, что в газе имеется градиент плотности