Файл: Федерального государственного бюджетного образовательного учреждения высшего образования башкирский государственный университет.docx

ВУЗ: Не указан

Категория: Курсовая работа

Дисциплина: Не указана

Добавлен: 12.01.2024

Просмотров: 65

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
, с которой они были измерены на передающей стороне. При запаздывании сообщений будут наблюдаться искажения.

В то же время трафик компьютерных данных характеризуется крайне неравномерной интенсивностью поступления сообщений в сеть при отсутствии жестких требований к синхронности доставки этих сообщений. Например, доступ пользователя, работающего с текстом на удаленном диске, порождает случайный поток сообщений между удаленным и локальным компьютерами, зависящий от действий пользователя, причем задержки при доставке в некоторых (достаточно широких с компьютерной точки зрения) пределах мало влияют на качество обслуживания пользователя сети. Все алгоритмы компьютерной связи, соответствующие протоколы и коммуникационное оборудование были рассчитаны именно на такой "пульсирующий" характер трафика, поэтому необходимость передавать мультимедийный трафик требует внесения принципиальных изменений, как в протоколы, так и в оборудование. Сегодня практически все новые протоколы в той или иной степени предоставляют поддержку мультимедийного трафика.

Особую сложность представляет совмещение в одной сети традиционного компьютерного и мультимедийного трафика. Передача исключительно мультимедийного трафика компьютерной сетью хотя и связана с определенными сложностями, но доставляет меньше хлопот. А вот сосуществование двух типов трафика с противоположными требованиями к качеству обслуживания является намного более сложной задачей. Обычно протоколы и оборудование компьютерных сетей относят мультимедийный трафик к факультативному, поэтому качество его обслуживания оставляет желать лучшего. Сегодня затрачиваются большие усилия по созданию сетей, которые не ущемляют интересы одного из типов трафика. Наиболее близки к этой цели сети на основе технологии ATM, разработчики которой изначально учитывали случай сосуществования разных типов трафика в одной сети.


2.6. Управляемость



В идеале средства управления сетями представляют собой систему, осуществляющую наблюдение, контроль и управление каждым элементом сети — от простейших до самых сложных устройств, при этом такая система рассматривает сеть как единое целое, а не как разрозненный набор отдельных устройств.

Управляемость сети подразумевает возможность централизованно контролировать состояние основных элементов сети, выявлять и решать проблемы, возникающие при работе сети, выполнять анализ производительности и планировать развитие сети.
Хорошая система управления наблюдает за сетью и, обнаружив проблему, активизирует определенное действие, исправляет ситуацию и уведомляет администратора о том, что произошло и какие шаги предприняты. Одновременно с этим система управления должна накапливать данные, на основании которых можно планировать развитие сети. Наконец, система управления должна быть независимой от производителя и обладать удобным интерфейсом, позволяющим выполнять все действия с одной консоли.
Решая тактические задачи, администраторы и технический персонал сталкиваются с ежедневными проблемами обеспечения работоспособности сети. Эти задачи требуют быстрого решения, обслуживающий сеть персонал должен оперативно реагировать на сообщения о неисправностях, поступающих от пользователей или автоматических средств управления сетью. Постепенно становятся заметны общие проблемы производительности, конфигурирования сети, обработки сбоев и безопасности данных, требующие стратегического подхода, то есть планирования сети. Планирование, кроме этого, включает прогноз изменений требований пользователей к сети, вопросы применения новых приложений, новых сетевых технологий и т. п.

Необходимость в системе управления особенно ярко проявляется в больших сетях: корпоративных или глобальных. Без системы управления в таких сетях требуется присутствие квалифицированных специалистов по эксплуатации в каждом здании каждого города, где установлено оборудование сети, что в итоге приводит к необходимости содержания огромного штата обслуживающего персонала.



В настоящее время в области систем управления сетями много нерешенных проблем. Явно недостаточно действительно удобных, компактных и многопротокольных средств управления сетью. Большинство существующих средств вовсе не управляют сетью, а всего лишь осуществляют наблюдение за ее работой. Они следят за сетью, но не выполняют активных действий, если с сетью что-то произошло или может произойти. Мало масштабируемых систем, способных обслуживать как сети масштаба отдела, так и сети масштаба предприятия, — очень многие системы управляют только отдельными элементами сети и не анализируют способность сети выполнять качественную передачу данных между конечными пользователями.

2.7. Совместимость


Совместимость или интегрируемость означает, что сеть может включать в себя разнообразное программное и аппаратное обеспечение, то есть в ней могут сосуществовать различные операционные системы, поддерживающие разные стеки коммуникационных протоколов, и работать аппаратные средства и приложения от разных производителей. Сеть, состоящая из разнотипных элементов, называется неоднородной или гетерогенной, а если гетерогенная сеть работает без проблем, то она является интегрированной. Основной путь построения интегрированных сетей — использование модулей, выполненных в соответствии с открытыми стандартами и спецификациями.

2.8. Качество обслуживания


Качество обслуживания (Quality of Service, QoS) определяет количественные оценки вероятности того, что сеть будет передавать определенный поток данных между двумя узлами в соответствии с потребностями приложения или пользователя.
Например, при передаче голосового трафика через сеть под качеством обслуживания чаще всего понимают гарантии того, что голосовые пакеты будут доставляться сетью с задержкой не более N мс, при этом вариация задержки не превысит M мс, и эти характеристики станут выдерживаться сетью с вероятностью 0,95 на определенном временном интервале. То есть приложению, которое передает голосовой трафик, важно, чтобы сеть гарантировала соблюдение именно этого приведенного выше набора характеристик качества обслуживания. Файловому сервису нужны гарантии средней полосы пропускания и расширения ее на небольших интервалах времени до некоторого максимального уровня для быстрой передачи пульсаций. В идеале сеть должна гарантировать особые параметры качества обслуживания, сформулированные для каждого отдельного приложения. Однако по понятным причинам разрабатываемые и уже существующие механизмы QoS ограничиваются решением более простой задачи —
гарантированием неких усредненных требований, заданных для основных типов приложений.

Чаще всего параметры, фигурирующие в разнообразных определениях качества обслуживания, регламентируют следующие показатели работы сети:

пропускная способность;

задержки передачи пакетов;

уровень потерь и искажений пакетов.

Качество обслуживания гарантируется для некоторого потока данных. Поток данных — это последовательность пакетов, имеющих некоторые общие признаки, например адрес узла-источника, информация, идентифицирующая тип приложения (номер порта TCP/UDP) и т. п. К потокам применимы такие понятия, как агрегирование и дифференцирование. Так, поток данных от одного компьютера может быть представлен как совокупность потоков от разных приложений, а потоки от компьютеров одного предприятия агрегированы в один поток данных абонента некоторого провайдера услуг.

Механизмы поддержки качества обслуживания сами по себе не создают пропускной способности. Сеть не может дать больше того, что имеет. Так что фактическая пропускная способность каналов связи и транзитного коммуникационного оборудования — это ресурсы сети, являющиеся отправной точкой для работы механизмов QoS. Механизмы QoS только управляют распределением имеющейся пропускной способности в соответствии с требованиями приложений и настройками сети. Самый очевидный способ перераспределения пропускной способности сети состоит в управлении очередями пакетов.

Поскольку данные, которыми обмениваются два конечных узла, проходят через некоторое количество промежуточных сетевых устройств, таких как концентраторы, коммутаторы и маршрутизаторы, то поддержка QoS требует взаимодействия всех сетевых элементов на пути трафика, то есть "из-конца-в-конец" ("end-to-end", "e2e"). Любые гарантии QoS настолько соответствуют действительности, насколько их обеспечивает наиболее "слабый" элемент в цепочке между отправителем и получателем. Поэтому нужно четко понимать, что поддержка QoS только в одном сетевом устройстве, пусть даже и магистральном, может лишь весьма незначительно улучшить качество обслуживания или же совсем не повлиять на параметры QoS.


Реализация в компьютерных сетях механизмов поддержки QoS является сравнительно новой тенденцией. Долгое время компьютерные сети существовали без таких механизмов, и это объясняется в основном двумя причинами.

Во-первых, большинство приложений, выполняемых в сети, были "нетребовательными", то есть для таких приложений задержки пакетов или отклонения средней пропускной способности в достаточно широком диапазоне не приводили к значительной потере функциональности. Примерами "нетребовательных" приложений являются наиболее распространенные в сетях 80-х годов приложения электронной почты или удаленного копирования файлов.

Во-вторых, сама пропускная способность 10-мегабитных сетей Ethernet во многих случаях не была дефицитом. Так, разделяемый сегмент Ethernet, к которому было подключено 10-20 компьютеров, изредка копирующих небольшие текстовые файлы, объем которых не превышает несколько сотен килобайт, позволял трафику каждой пары взаимодействующих компьютеров пересекать сеть так быстро, как требовалось породившим этот трафик приложениям.

В результате большинство сетей работало с тем качеством транспортного обслуживания, которое обеспечивало потребности приложений. Правда, никаких гарантий относительно контроля задержек пакетов или пропускной способности, с которой пакеты передаются между узлами, в определенных пределах эти сети не давали. Более того, при временных перегрузках сети, когда значительная часть компьютеров одновременно начинала передавать данные с максимальной скоростью, задержки и пропускная способность становились такими, что работа приложений давала сбой — шла слишком медленно, с разрывами сессий и т. п.

ЗАКЛЮЧЕНИЕ


Актуальность данной работы заключается в том, что существует два основных подхода к обеспечению качества работы сети. Первый состоит в том, что сеть гарантирует пользователю соблюдение некоторой числовой величины показателя качества обслуживания. Например, сети frame relay и ATM могут гарантировать пользователю заданный уровень пропускной способности. При втором подходе (best effort) сеть старается по возможности более качественно обслужить пользователя, но ничего при этом не гарантирует.

Транспортный сервис, который предоставляли такие сети, получил название "best effort", то есть сервис "с максимальными усилиями" (или "по возможности"). Сеть старается обработать поступающий трафик как можно быстрее, но при этом никаких гарантий относительно результата не дает. Примерами может служить большинство технологий, разработанных в 80-е годы: Ethernet, Token Ring, IP, X.25. Сервис "с максимальными усилиями" основан на некотором справедливом алгоритме обработки очередей, возникающих при перегрузках сети, когда в течение некоторого времени скорость поступления пакетов в сеть превышает скорость продвижения этих пакетов. В простейшем случае алгоритм обработки очереди рассматривает пакеты всех потоков как равноправные и продвигает их в порядке поступления (First In — First Out, FIFO). В том случае, когда очередь становится слишком большой (не умещается в буфере), проблема решается простым отбрасыванием новых поступающих пакетов.