ВУЗ: Московский государственный университет тонких химических технологий им. М.В. Ломоносова
Категория: Курсовая работа
Дисциплина: Химия
Добавлен: 14.02.2019
Просмотров: 1489
Скачиваний: 6
МОСКОВСКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ
ТОНКОЙ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ им. М.В. ЛОМОНОСОВА
КАФЕДРА ОХТ
КУРСОВОЙ ПРОЕКТ
Студент Ходаков Д.А.
ГруппаХТ-409
ПреподавательСмирнова С.Н.
Москва 2000
Исходные данные
Содержание NH3 в аммиачно-воздушной смеси,% (по объему)
________________________________10
Степень превращения NH3 в NO,% (остальной аммиак окисляется до азота) ________________________________97
Степень переработки нитрозных газов в HNO3,%
_______________________________98,5
Концентрация HNO3,% (по массе)
________________________________58
Содержание в выхлопных газах,% (по объему):
Кислорода
_______________________________3,2
Воды _______________________________2,7
Базис расчета, кг HNO3 в продукте
______________________________2500
Введение
Азотная кислота – одна из важнейших минеральных кислот. По объему производства в химической промышленности она занимает второе место после серной кислоты. Азотная кислота широко применяется для производства многих продуктов, используемых в промышленности и сельском хозяйстве:
-
около 40% ее расходуется на получение сложных и азотных минеральных удобрений;
-
азотная кислота используется для производства
-
синтетических красителей,
-
взрывчатых веществ,
-
нитролаков,
-
пластических масс,
-
лекарственных синтетических веществ и др.;
-
железо хорошо растворяется в разбавленной азотной кислоте. Концентрационная азотная кислота образует на поверхности железа тонкий, но плотный слой нерастворимого в концентрированной кислоте оксида, защищающего металл от дальнейшего разъедания. Эта способность железа пассивироваться используется для защиты его от коррозии.
Концентрированную азотную кислоту (особенно с добавлением 10% H2SO4) перевозят обычно в стальных цистернах. Многие органические вещества (в частности животные и растительные ткани) при действии HNO3 разрушаются, а некоторые из них от соприкосновения с очень концентрированной кислотой могут воспламеняться. В лабораторной практике обычно применяется азотная кислота, содержащая около 65% HNO3 (пл.1,40). В промышленности применяют два сорта азотной кислоты: разбавленную с содержанием 50–60% HNO3 и концентрированную, содержащую 96–98% HNO3.
Раньше, когда не существовало производства синтетического аммиака, азотную кислоту получали действием серной кислоты на чилийскую селитру. Объемы производств были очень небольшими, и кислота использовалась только для производства взрывчатых веществ, красителей и некоторых других химических продуктов.
Исходное сырье
Сырьем для получения азотной кислоты служат аммиак, воздух и вода.
Синтетический аммиак в большей или меньшей степени загрязнен примесями. Такими примесями являются катализаторная пыль, смазочное масло (при сжатии поршневым компрессором). Для получения чистого газообразного аммиака служат испарительные станции и дистилляционные отделения жидкого аммиака. Дальнейшая очистка осуществляется в фильтрах, состоящих из чечевицеобразных элементов, фильтрующим материалом в которых служит хлопчатобумажная замша. Тонкой очистке аммиачно–воздушная смесь подвергается в фильтре с поролитовыми трубками.
Атмосферный воздух, применяемый в производстве азотной кислоты, забирается на территории завода или вблизи его. Этот воздух загрязнен газообразными примесями и пылью. Поэтому он подвергается тщательной очистке во избежание отравления катализатора окисления аммиака. Очистка воздуха осуществляется, как правило, в скруббере, орошаемом водой, затем в двухступенчатом фильтре.
Вода, применяемая для технологических нужд, подвергается специальной подготовке: отстою от механических примесей, фильтрованию и химической очистке от растворенных в ней солей. Для получения реактивной азотной кислоты требуется чистый паровой конденсат, который дополнительно очищают от возможных примесей. [1, стр.397]
Характеристика целевого продукта
Безводная азотная кислота HNO3 представляет тяжелую бесцветную жидкость, пл.1,52 (при 15 ºС), дымящую на воздухе. Она замерзает при –41 и кипит при 86 ºС. Кипение кислоты сопровождается частичным разложением:
4HNO3 2H2 + 4NO2 + O2 – 259,7 кДж
Выделяющийся диоксид азота, растворяясь в кислоте, окрашивает ее в желтый или красный (в зависимости от количества NO2) цвет. С водой азотная кислота смешивается в любых соотношениях. Выделение теплоты при разбавлении азотной кислоты водой свидетельствует об образовании гидратов (HNO3H2O, HNO32H2O).
Азотная кислота – сильный окислитель. Металлы, за исключением Pt, Rh, Ir, Au, переводятся концентрированной азотной кислотой в соответствующие оксиды. Если последние растворимы в азотной кислоте, то образуются нитраты. [2, стр.99]
Физико-химическое обоснование основных процессов производства целевого продукта
Химическая концепция метода
Процесс производства разбавленной азотной кислоты складывается из трех стадий:
конверсия аммиака с целью получения оксида азота
4NH3 + 5O2 = 4NO + 6H2O
окисление оксида азота до диоксида
2NO + O2 2NO2
абсорбция оксидов азота водой
4NO2 + O2 + 2H2O = 4HNO3
Основная реакция:
4NH3 + 5O2 = 4NO +6H2O + 946 кДж(1)
Наряду с основной реакцией протекают и побочные реакции (в основном параллельные) окисления аммиака до молекулярного азота и оксида азота(I):
4NH3 + 3O2 = 2N2 +6H2O + 1328 кДж(2)
4NH3 + 4O2 = 2N2O +6H2O + 1156 кДж(3)
В таблице 1 приведены термодинамические характеристики этих реакций, из которых можно видеть, что среди реакций окисления аммиака кислородом наибольшую термодинамическую вероятность имеет реакция (2), характеризующаяся наибольшим изменением анергии Гиббса. Вероятность реакции (1) с повышением температуры возрастает почти вдвое, а реакции (2) почти не изменяется.
Реакция |
H298 кДж/моль |
G, кДж/моль, при температуре |
Кр, при температуре |
||
298 К |
1173 К |
500 |
1000 |
||
1 |
–226.00 |
–246.21 |
–414.55 |
1075 |
1051 |
2 |
–317. 20 |
–326.85 |
–335.22 |
1095 |
1062 |
3 |
–276.11 |
–274.75 |
– |
1083 |
1056 |
Реакции окисления аммиака сопровождаются значительной убылью свободной энергии. Реакции (1) - (3) практически необратимы, об этом говорят константы равновесия этих реакций в интервале температур 500 - 1000 оС, так как эти константы значительно больше констант обратимых реакций (10-2 - 102). При увеличении температуры до 1000 оС значение констант падает на несколько порядков (так как реакции экзотермические), но даже при 1000 оС реакции (1) - (3) практически полностью смещены в сторону продуктов реакции.
Поскольку все реакции протекают с выделением тепла и увеличением объёма, то в соответствии с принципом Ле-Шателье нам не удастся с помощью варьирования температуры и давления сильно сдвинуть главную реакции в правую сторону не сдвигая туда же и побочные реакции. Увеличение концентрации кислорода тоже не позволит селективно сместить равновесие основной реакции.